Embedding theorems in constructive approximation
Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1367-1407 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for the accuracy of embedding theorems of various function classes are obtained. The main result of the paper is a criterion for embeddings between generalized Weyl-Nikol'skiǐ and generalized Lipschitz classes. To define the Weyl-Nikol'skiǐ classes we use the concept of a $(\lambda,\beta)$-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, estimates for the norms and moduli of smoothness of transformed Fourier series are obtained. Bibliography: 59 titles.
@article{SM_2008_199_9_a2,
     author = {B. V. Simonov and S. Yu. Tikhonov},
     title = {Embedding theorems in constructive approximation},
     journal = {Sbornik. Mathematics},
     pages = {1367--1407},
     year = {2008},
     volume = {199},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_9_a2/}
}
TY  - JOUR
AU  - B. V. Simonov
AU  - S. Yu. Tikhonov
TI  - Embedding theorems in constructive approximation
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1367
EP  - 1407
VL  - 199
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_9_a2/
LA  - en
ID  - SM_2008_199_9_a2
ER  - 
%0 Journal Article
%A B. V. Simonov
%A S. Yu. Tikhonov
%T Embedding theorems in constructive approximation
%J Sbornik. Mathematics
%D 2008
%P 1367-1407
%V 199
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2008_199_9_a2/
%G en
%F SM_2008_199_9_a2
B. V. Simonov; S. Yu. Tikhonov. Embedding theorems in constructive approximation. Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1367-1407. http://geodesic.mathdoc.fr/item/SM_2008_199_9_a2/

[1] S. N. Bernshtein, Polnoe sobranie sochinenii, t. 1, 2, Izd-vo AN SSSR, M., 1952–1954 | MR | MR | Zbl

[2] V. V. Zhuk, G. I. Natanson, “S. N. Bernstein and direct and converse theorems of constructive function theory”, Amer. Math. Soc. Transl. Ser. 2, 205, Amer. Math. Soc., Providence, RI, 2002, 59–82 | MR | MR | Zbl

[3] S. A. Telyakovskii, “O rabotakh S. B. Stechkina po priblizheniyu periodicheskikh funktsii polinomami”, Fundament. i prikl. matem., 3:4 (1997), 1059–1068 | MR | Zbl

[4] A. Pinkus, “Negative theorems in approximation theory”, Amer. Math. Monthly, 110:10 (2003), 900–911 | DOI | MR | Zbl

[5] S. Bernstein, “Sur les recherches recentes relatives à la meilleure approximation des fonctions continues par des polynomes”, Proc. 5. Intern. Math. Congr. 1, 1913, 256–266 ; С. Н. Бернштейн, Полное собрание сочинений, т. 2, Изд-во АН СССР, М., 1954, 112–124 ; http://www.math.technion.ac.il/hat/fpapers/ber.pdf | Zbl | MR | Zbl

[6] D. Jackson, Über die Genauigkeit der Annaheurung Stetiger Funktionen durch ganze rationale Funtionen gegebenen Grades und trigonometrischen Summen gegebenen Ordnung, Thesis, Göttingen, 1911

[7] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[8] S. N. Bernshtein, “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Soobsch. Khark. MO, 2, 13 (1912), 49–194 ; С. Н. Бернштейн, Полное собрание сочинений, т. 1, Изд. АН СССР, М., 1952, 11–104 | Zbl | MR | Zbl

[9] S. Bernstein, “Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné”, Mém. Cl. Sci. Acad. Roy. Belg., 4 (1912), 1–103 ; http://www.math.technion.ac.il/hat/fpapers/ber2.pdf | Zbl

[10] Ch. J. Vallée-Poussin, Lecons sur l'approximation des fonctions d'une variable réelle, Gauthier-Villars, Paris, 1919 | Zbl

[11] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[12] M. F. Timan, “On Jackson's theorem in $L_p$-spaces”, Amer. Math. Soc. Transl. Ser. 2, 74, Amer. Math. Soc., Providence, RI, 1968, 194–198 | MR | Zbl | Zbl

[13] O. V. Besov, “Investigation of a family of function spaces in connection with theorems of imbedding and extension”, Amer. Math. Soc. Transl. Ser. 2, 40, Amer. Math. Soc., Providence, RI, 1964, 85–126 | MR | Zbl | Zbl

[14] A. Zygmund, “Smooth functions”, Duke Math. J., 12:1 (1945), 47–76 | DOI | MR | Zbl

[15] H. Johnen, “Inequalities connected with the moduli of smoothness”, Mat. Vesnik, 9:24 (1972), 289–303 | MR | Zbl

[16] H. Johnen, K. Scherer, “On the equivalence of the $K$-functional and moduli of continuity and some applications”, Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976), Lecture Notes in Math., 571, Springer-Verlag, Berlin–Heidelberg, 1977, 119–140 | DOI | MR | Zbl

[17] J. Marcinkiewicz, “Sur quelques intégrales du type de Dini”, Ann. Soc. Polonaise Math., 17 (1938), 42–50 | Zbl

[18] Z. Ditzian, S. Tikhonov, “Moduli of smoothness of functions and their derivatives”, Studia Math., 180:2 (2007), 143–160 | DOI | MR | Zbl

[19] I. I. Privalov, “Sur les fonctions conjuguées”, Bull. Soc. Math. France, 44 (1916), 100–103

[20] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, Izd-vo Mosk. un-ta, M., 1956, 483–522 | MR | Zbl

[21] A. Zygmund, Trigonometric series, vols. I, II, Cambridge Univ. Press, New York, 1959 | MR | Zbl | Zbl

[22] G. H. Hardy, J. E. Littlewood, “Some properties of fractional integrals. I”, Math. Z., 27:1 (1928), 565–606 | DOI | MR | Zbl

[23] I. I. Ogievitskii, “Integrirovanie i differentsirovanie drobnogo poryadka periodicheskikh funktsii i konstruktivnaya teoriya funktsii”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Fizmatgiz, M., 1961, 159–164 | MR

[24] P. L. Butzer, H. Dyckhoff, E. Görlich, R. L. Stens, “Best trigonometric approximation, fractional order derivatives and Lipschitz classes”, Canad. J. Math., 29:4 (1977), 781–793 | MR | Zbl

[25] R. Taberski, “Differences, moduli and derivatives of fractional orders”, Comment. Math. Prace Mat., 19:2 (1977), 389–400 | MR | Zbl

[26] A. I. Stepanets, Methods of approximation theory, VSP, Leiden, 2005 | MR | MR | MR | Zbl | Zbl

[27] S. G. Samko, A. Ya. Yakubov, “A Zygmund estimate for the modulus of continuity of fractional order of an adjoint function”, Soviet Math. (Iz. VUZ), 29:12 (1985), 66–72 | MR | Zbl

[28] A. I. Stepanets, “Inverse theorems on approximation of periodic functions”, Ukrainian Math. J., 47:9 (1995), 1441–1448 | DOI | MR | Zbl

[29] A. I. Stepanets, E. I. Zhukina, “Inverse theorems for the approximation of $(\psi,\beta)$-differentiable functions”, Ukrainian Math. J., 41:8 (1989), 953–959 | DOI | MR | Zbl

[30] R. Taberski, “Trigonometric approximation in the spaces $L^p$ $(1\le p\le\infty)$”, Comment. Math., 2 (1979), 315–328 | MR | Zbl

[31] M. K. Potapov, “Interconnection between certain classes of functions”, Math. Notes, 2:4 (1967), 706–714 | DOI | MR | Zbl

[32] B. V. Simonov, O svoistvakh preobrazovannogo ryada Fure, dep. v VINITI 3031-81, 1981

[33] E. Cohen, “On the degree of approximation of a function by the partial sums of its Fourier series”, Trans. Amer. Math. Soc., 235 (1978), 35–74 | DOI | MR | Zbl

[34] J. T. Scheick, “Polynomial approximation of functions analytic in a disk”, Proc. Amer. Math. Soc., 17:6 (1966), 1238–1243 | DOI | MR | Zbl

[35] B. Szökefalvi-Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall”, Ber. Verh. Sächs. Akad. Leipzig, 90 (1938), 103–134 | Zbl

[36] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, vol. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl

[37] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–Heidelberg–New York, 1976 ; I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR | Zbl | MR

[38] R. M. Trigub, E. S. Bellinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl

[39] P. L. Butzer, R. J. Nessel, Fourier analysis and approximation, vol. 1: One-dimensional theory, Pure and Applied Mathematics, 40, Academic Press, New York–London; Birkhäuser, Basel, 1971 | MR | Zbl

[40] N. K. Bari, Trigonometricheskie ryady, Fizmatlit, M., 1961 | MR

[41] M. K. Potapov, B. V. Simonov, “On the interrelation of the generalized Besov–Nikol'skiĭ and Weyl–Nikol'skiĭclasses of functions”, Anal. Math., 22:4 (1996), 299–316 | DOI | MR | Zbl

[42] Z. Ditzian, V. H. Hristov, K. G. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0

1$”, Constr. Approx., 11:1 (1995), 67–83 | DOI | MR | Zbl

[43] S. B. Stechkin, “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20:2 (1956), 197–206 | MR | Zbl

[44] S. A. Telyakovskii, “Lower bounds of the integral modulus of continuity of a function in terms of its Fourier coefficients”, Math. Notes, 52:5 (1992), 1149–1153 | DOI | MR | Zbl

[45] M. F. Timan, “O vlozhenii $L^{(k)}_p$-klassov funktsii”, Izv. vuzov. Matem., 1974, no. 10(149), 61–74 | MR | Zbl

[46] Sh. U. Azhgaliev, N. Temirgaliev, “Informativeness of all the linear functionals in the recovery of functions in the classes $H_p^{\omega}$”, Sb. Math., 198:11 (2007), 1535–1551 | DOI | MR | Zbl

[47] V. É. Geit, “The conditions for the imbedding of the classes $H_\omega^{k, R}$ and $\widetilde{H}^\omega_{k, R}$”, Math. Notes, 13:2 (1973), 101–106 | DOI | MR | Zbl

[48] V. É. Geit, “The accuracy of certain inequalities in approximation theory”, Math. Notes, 10:5 (1971), 768–776 | DOI | MR | Zbl

[49] N. K. Bari, “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | MR | Zbl

[50] M. K. Potapov, B. V. Simonov, S. Yu. Tikhonov, “On the Besov and Besov–Nikol'skiĭ classes and on estimates for the mixed moduli of smoothness of fractional derivatives”, Proc. Steklov Inst. Math., 243:4 (2003), 234–246 | MR | Zbl

[51] M. K. Potapov, B. V. Simonov, S. Yu. Tikhonov, “Transformation of fourier series using power and weakly oscillating sequences”, Math. Notes, 77:1–2 (2005), 90–107 | DOI | MR | Zbl

[52] P. L. Ul'yanov, “Equivalent conditions of convergence of series and integrals for a trigonometric system”, Russian Acad. Sci. Dokl. Math., 52:1 (1995), 66–70 | MR | Zbl

[53] F. Moricz, “A quantitative version of the Young test for the convergence of conjugate series”, J. Approx. Theory, 81:2 (1995), 207–216 | DOI | MR | Zbl

[54] M. Hasson, O. Shisha, “On the condition $\sum^{\infty}_{n=1}n^{p-1}E^{*}_{n}(f)\infty$”, J. Approx. Theory, 39:4 (1983), 389–393 | DOI | MR | Zbl

[55] N. A. Il'yasov, “Imbedding theorems for some classes of periodic functions in $L_p$, $1\le p\le \infty$”, Soviet Math. Dokl., 29:3 (1984), 675–678 | MR | Zbl

[56] B. V. Simonov, S. Yu. Tikhonov, “On embeddings of function classes defined by constructive characteristics”, Approximation and probability (Bedlewo, Poland, 2004), Banach Center Publ., 72, Polish Acad. Sci., Warsaw, 2006, 285–307 | MR | Zbl

[57] S. Yu. Tikhonov, “Moduli of smoothness and the interrelation of some classes of functions”, Function spaces, interpolation theory and related topics (Lund, Sweden, 2000), de Gruyter, Berlin, 2002, 413–423 | MR | Zbl

[58] S. Tikhonov, “On moduli of smoothness of fractional order”, Real Anal. Exchange, 30:2 (2005), 507–518 | MR | Zbl

[59] S. Yu. Tikhonov, “Generalized Lipschitz classes and Fourier coefficients”, Math. Notes, 75:5–6 (2004), 885–889 | DOI | MR | Zbl