Embedding theorems in constructive approximation
Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1367-1407

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the accuracy of embedding theorems of various function classes are obtained. The main result of the paper is a criterion for embeddings between generalized Weyl-Nikol'skiǐ and generalized Lipschitz classes. To define the Weyl-Nikol'skiǐ classes we use the concept of a $(\lambda,\beta)$-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, estimates for the norms and moduli of smoothness of transformed Fourier series are obtained. Bibliography: 59 titles.
@article{SM_2008_199_9_a2,
     author = {B. V. Simonov and S. Yu. Tikhonov},
     title = {Embedding theorems in constructive approximation},
     journal = {Sbornik. Mathematics},
     pages = {1367--1407},
     publisher = {mathdoc},
     volume = {199},
     number = {9},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_9_a2/}
}
TY  - JOUR
AU  - B. V. Simonov
AU  - S. Yu. Tikhonov
TI  - Embedding theorems in constructive approximation
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1367
EP  - 1407
VL  - 199
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_9_a2/
LA  - en
ID  - SM_2008_199_9_a2
ER  - 
%0 Journal Article
%A B. V. Simonov
%A S. Yu. Tikhonov
%T Embedding theorems in constructive approximation
%J Sbornik. Mathematics
%D 2008
%P 1367-1407
%V 199
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_9_a2/
%G en
%F SM_2008_199_9_a2
B. V. Simonov; S. Yu. Tikhonov. Embedding theorems in constructive approximation. Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1367-1407. http://geodesic.mathdoc.fr/item/SM_2008_199_9_a2/