On blow-up of solutions of the Kuramoto-Sivashinsky equation
Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1355-1365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the absence of global solutions of initial-boundary value problems for the Kuramoto-Sivashinsky equation is considered. Sufficient conditions for the absence of global solutions of the problems under consideration are obtained both for bounded and unbounded domains. These conditions imply a priori the blow-up of the solution of the corresponding initial-boundary value problem. The proof uses a generalization of the method of non-linear capacity based on the choice of asymptotically optimal test functions. Bibliography: 20 titles.
@article{SM_2008_199_9_a1,
     author = {S. I. Pokhozhaev},
     title = {On blow-up of solutions of the {Kuramoto-Sivashinsky} equation},
     journal = {Sbornik. Mathematics},
     pages = {1355--1365},
     year = {2008},
     volume = {199},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_9_a1/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On blow-up of solutions of the Kuramoto-Sivashinsky equation
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1355
EP  - 1365
VL  - 199
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_9_a1/
LA  - en
ID  - SM_2008_199_9_a1
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On blow-up of solutions of the Kuramoto-Sivashinsky equation
%J Sbornik. Mathematics
%D 2008
%P 1355-1365
%V 199
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2008_199_9_a1/
%G en
%F SM_2008_199_9_a1
S. I. Pokhozhaev. On blow-up of solutions of the Kuramoto-Sivashinsky equation. Sbornik. Mathematics, Tome 199 (2008) no. 9, pp. 1355-1365. http://geodesic.mathdoc.fr/item/SM_2008_199_9_a1/

[1] Yo. Kuramoto, T. Tsuzuki, “On the formation of dissipative structures in reaction-diffusion systems”, Progr. Theoret. Phys., 54:3 (1975), 687–699 | DOI

[2] Yo. Kuramoto, T. Tsuzuki, “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium”, Progr. Theoret. Phys., 55:2 (1976), 356–369 | DOI

[3] G. I. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations”, Acta Astronaut., 4:11–12 (1977), 1177–1206 | DOI | MR | Zbl

[4] G. I. Sivashinsky, “On flame propagation under conditions of stoichiometry”, SIAM J. Appl. Math., 39:1 (1980), 67–82 | DOI | MR | Zbl

[5] H. Bellout, S. Benachour, E. S. Titi, “Finite-time singularity versus global regularity for hyper-viscous Hamilton–Jacobi-like equations”, Nonlinearity, 16:6 (2003), 1967–1989 | DOI | MR | Zbl

[6] Ja. C. Bronski, Th. N. Gambill, “Uncertainty estimates and $L_2$ bounds for the Kuramoto–Sivashinsky equation”, Nonlinearity, 19:9 (2006), 2023–2039 | DOI | MR | Zbl

[7] Ya. Cao, E. S. Titi, “Trivial stationary solutions to the Kuramoto–Sivashinsky and certain nonlinear elliptic equations”, J. Differential Equations, 231:2 (2006), 755–767 | DOI | MR | Zbl

[8] Sh. Cui, C. Guo, “Global existence and exponential decay of solutions of generalized Kuramoto–Sivashinsky equations”, J. Partial Differential Equations, 18:2 (2005), 167–184 | MR | Zbl

[9] J. N. Elgin, X. Wu, “Stability of cellular states of the Kuramoto–Sivashinsky equation”, SIAM J. Appl. Math., 56:6 (1996), 1621–1638 | DOI | MR | Zbl

[10] C. Foias, B. Nicolaenko, G. R. Sell, R. Temam, “Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension”, J. Math. Pures Appl. (9), 67:3 (1988), 197–226 | MR | Zbl

[11] L. Giacomelli, F. Otto, “New bounds for the Kuramoto–Sivashinsky equation”, Comm. Pure Appl. Math., 58:3 (2005), 297–318 | DOI | MR | Zbl

[12] B. Guo, “The existence and nonexistence of a global smooth solution for the initial value problem of generalized Kuramoto–Sivashinsky type equations”, J. Math. Res. Exposition, 11:1 (1991), 57–70 | MR | Zbl

[13] P. Kent, J. Elgin, “Travelling-waves of the Kuramoto–Sivashinsky, equation: period-multiplying bifurcations”, Nonlinearity, 5:4 (1992), 899–919 | DOI | MR | Zbl

[14] J. Nickel, “Travelling wave solutions to the Kuramoto–Sivashinsky equation”, Chaos Solitons Fractals, 33:4 (2007), 1376–1382 | DOI | MR | Zbl

[15] E. Tadmor, “The well-posedness of the Kuramoto–Sivashinsky equation”, SIAM J. Math. Anal., 17:4 (1986), 884–893 | DOI | MR | Zbl

[16] D. Tseluiko, D. T. Papageorgiou, “A global attracting set for nonlocal Kuramoto–Sivashinsky equations arising in interfacial electrohydrodynamics”, European J. Appl. Math., 17:6 (2006), 677–703 | DOI | MR | Zbl

[17] H. Uecker, A. Wierschem, “A spatially periodic Kuramoto–Sivashinsky equation as a model problem for inclined film flow over wavy bottom”, Electron. J. Differential Equations, 118 (2007), 1–18 | MR | Zbl

[18] D. Yang, “Dynamics for the stochastic nonlocal Kuramoto–Sivashinsky equation”, J. Math. Anal. Appl., 330:1 (2007), 550–570 | DOI | MR | Zbl

[19] N. A. Larkin, “Korteweg–de Vries and Kuramoto–Sivashinsky equations in bounded domains”, J. Math. Anal. Appl., 297:1 (2004), 169–185 | DOI | MR | Zbl

[20] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234:3 (2001), 1–362 | MR | Zbl | Zbl