Birational geometry of Fano double covers
Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1225-1250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The divisorial canonicity of Fano double hypersurfaces of general position is proved. Bibliography: 19 titles.
@article{SM_2008_199_8_a4,
     author = {A. V. Pukhlikov},
     title = {Birational geometry of {Fano} double covers},
     journal = {Sbornik. Mathematics},
     pages = {1225--1250},
     year = {2008},
     volume = {199},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_8_a4/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birational geometry of Fano double covers
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1225
EP  - 1250
VL  - 199
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_8_a4/
LA  - en
ID  - SM_2008_199_8_a4
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birational geometry of Fano double covers
%J Sbornik. Mathematics
%D 2008
%P 1225-1250
%V 199
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2008_199_8_a4/
%G en
%F SM_2008_199_8_a4
A. V. Pukhlikov. Birational geometry of Fano double covers. Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1225-1250. http://geodesic.mathdoc.fr/item/SM_2008_199_8_a4/

[1] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | MR | Zbl

[2] A. V. Pukhlikov, “Birationally rigid varieties. I. Fano varieties”, Russian Math. Surveys, 62:5 (2007), 857–942 | DOI | MR | Zbl

[3] A. V. Pukhlikov, “Birationally rigid Fano double hypersurfaces”, Sb. Math., 191:6 (2000), 883–908 | DOI | MR | Zbl

[4] A. V. Pukhlikov, “Birationally rigid varieties with a pencil of Fano double covers. III”, Sb. Math., 197:3 (2006), 335–368 | DOI | MR | Zbl

[5] A. V. Pukhlikov, “Birationally rigid varieties with a pencil of double Fano covers. I”, Sb. Math., 195:7 (2004), 1039–1071 | DOI | MR | Zbl

[6] A. V. Pukhlikov, “Birationally rigid varieties with a pencil of Fano double covers. II”, Sb. Math., 195:11 (2004), 1665–1702 | DOI | MR | Zbl

[7] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano complete intersections”, Manuscripta Math., 121:4 (2006), 491–526 | DOI | MR | Zbl

[8] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl

[9] I. A. Cheltsov, “Birationally rigid Fano varieties”, Russian Math. Surveys, 60:5 (2005), 875–965 | DOI | MR | Zbl

[10] I. A. Cheltsov, M. M. Grinenko, Birational rigidity is not an open property, arXiv: math/0612159

[11] G. Tian, “On Kähler–Einstein metrics on certain Kähler manifolds with $C_1 (M)>0$”, Invent. Math., 89:2 (1987), 225–246 | DOI | MR | Zbl

[12] J.-P. Demailly, J. Kollár, “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. Sci. École Norm. Sup. (4), 34:4 (2001), 525–556 | DOI | MR | Zbl

[13] A. M. Nadel, “Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature”, Ann. of Math. (2), 132:3 (1990), 549–596 | DOI | MR | Zbl

[14] A. V. Pukhlikov, “Birationally rigid iterated Fano double covers”, Izv. Math., 67:3 (2003), 555–596 | DOI | MR | Zbl

[15] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 ; U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR

[16] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[17] A. V. Pukhlikov, “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl

[18] A. V. Pukhlikov, “Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces”, Izv. Math., 62:1 (1998), 115–155 | DOI | MR | Zbl

[19] V. A. Iskovskih, J. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl | Zbl