Semifree circle actions, Bott towers and quasitoric manifolds
Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1201-1223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Bott tower is the total space of a tower of fibre bundles with base $\mathbb C P^1$ and fibres $\mathbb C P^1$. Every Bott tower of height $n$ is a smooth projective toric variety whose moment polytope is combinatorially equivalent to an $n$-cube. A circle action is semifree if it is free on the complement to the fixed points. We show that a quasitoric manifold over a combinatorial $n$-cube admitting a semifree action of a 1-dimensional subtorus with isolated fixed points is a Bott tower. Then we show that every Bott tower obtained in this way is topologically trivial, that is, homeomorphic to a product of 2-spheres. This extends a recent result of Il'inskiǐ, who showed that a smooth compact toric variety admitting a semifree action of a 1-dimensional subtorus with isolated fixed points is homeomorphic to a product of 2-spheres, and makes a further step towards our understanding of Hattori's problem of semifree circle actions. Finally, we show that if the cohomology ring of a quasitoric manifold is isomorphic to that of a product of 2-spheres, then the manifold is homeomorphic to this product. In the case of Bott towers the homeomorphism is actually a diffeomorphism. Bibliography: 18 titles.
@article{SM_2008_199_8_a3,
     author = {M. Masuda and T. E. Panov},
     title = {Semifree circle actions, {Bott} towers and quasitoric manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1201--1223},
     year = {2008},
     volume = {199},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_8_a3/}
}
TY  - JOUR
AU  - M. Masuda
AU  - T. E. Panov
TI  - Semifree circle actions, Bott towers and quasitoric manifolds
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1201
EP  - 1223
VL  - 199
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_8_a3/
LA  - en
ID  - SM_2008_199_8_a3
ER  - 
%0 Journal Article
%A M. Masuda
%A T. E. Panov
%T Semifree circle actions, Bott towers and quasitoric manifolds
%J Sbornik. Mathematics
%D 2008
%P 1201-1223
%V 199
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2008_199_8_a3/
%G en
%F SM_2008_199_8_a3
M. Masuda; T. E. Panov. Semifree circle actions, Bott towers and quasitoric manifolds. Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1201-1223. http://geodesic.mathdoc.fr/item/SM_2008_199_8_a3/

[1] R. Bott, H. Samelson, “Applications of the theory of Morse to symmetric spaces”, Amer. J. Math., 80:4 (1958), 964–1029 | DOI | MR | Zbl

[2] M. Grossberg, Y. Karshon, “Bott towers, complete integrability, and the extended character of representations”, Duke Math. J., 76:1 (1994), 23–58 | DOI | MR | Zbl

[3] Yu. Civan, N. Ray, “Homotopy decompositions and $K$-theory of Bott towers”, $K$-Theory, 34:1 (2005), 1–33 | DOI | MR | Zbl

[4] A. Hattori, “Symplectic manifolds with semi-free Hamiltonian $S^1$-action”, Tokyo J. Math., 15:2 (1992), 281–296 | MR | Zbl

[5] S. Tolman, J. Weitsman, “On semifree symplectic circle actions with isolated fixed points”, Topology, 39:2 (2000), 299–309 | DOI | MR | Zbl

[6] D. G. Il'inskii, “Almost free action of the one-dimensional torus on a toric variety”, Sb. Math., 197:5 (2006), 681–703 | DOI | MR | Zbl

[7] N. E. Dobrinskaya, “Classification problem for quasitoric manifolds over a given simple polytope”, Funct. Anal. Appl., 35:2 (2001), 83–89 | DOI | MR | Zbl

[8] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[9] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR | Zbl

[10] S. Choi, M. Masuda, D. Y. Suh, Quasitoric manifolds over a product of simplices, arXiv: abs/0803.2749

[11] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 | MR | Zbl

[12] V. M. Buchstaber, N. Ray, “Tangential structures on toric manifolds, and connected sums of polytopes”, Internat. Math. Res. Notices, 2001, no. 4, 193–219 | DOI | MR | Zbl

[13] M. Masuda, “Unitary toric manifolds, multi-fans and equivariant index”, Tohoku Math. J. (2), 51:2 (1999), 237–265 | DOI | MR | Zbl

[14] V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[15] T. E. Panov, “Hirzebruch genera of manifolds with torus action”, Izv. Math., 65:3 (2001), 543–556 | DOI | MR | Zbl

[16] A. Hattori, T. Yoshida, “Lifting compact group actions in fiber bundles”, Japan. J. Math. (N.S.), 2:1 (1976), 13–25 | MR | Zbl

[17] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, Berlin–New York, 1995 | MR | Zbl

[18] M. Masuda, T. Panov, “On the cohomology of torus manifolds”, Osaka J. Math., 43:3 (2006), 711–746 | MR | Zbl