Behaviour at infinity of solutions of pseudodifferential
Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1169-1200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Upper bounds are obtained for solutions of the Dirichlet problem for pseudodifferential elliptic equations where the right-hand side has compact support. In domains with non-compact boundary they characterise the behaviour of solutions at infinity in its dependence on the geometric properties of the domain. For unbounded domains where the boundary has irregular behaviour, it is shown that these bounds may be more efficient than the bounds that are already known for second-order elliptic equations. For second-order elliptic equations in a broad class of domains of revolution these bounds are shown to be sharp. Bibliography: 17 titles.
@article{SM_2008_199_8_a2,
     author = {L. M. Kozhevnikova},
     title = {Behaviour at infinity of solutions of pseudodifferential},
     journal = {Sbornik. Mathematics},
     pages = {1169--1200},
     year = {2008},
     volume = {199},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_8_a2/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Behaviour at infinity of solutions of pseudodifferential
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1169
EP  - 1200
VL  - 199
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_8_a2/
LA  - en
ID  - SM_2008_199_8_a2
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Behaviour at infinity of solutions of pseudodifferential
%J Sbornik. Mathematics
%D 2008
%P 1169-1200
%V 199
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2008_199_8_a2/
%G en
%F SM_2008_199_8_a2
L. M. Kozhevnikova. Behaviour at infinity of solutions of pseudodifferential. Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1169-1200. http://geodesic.mathdoc.fr/item/SM_2008_199_8_a2/

[1] M. S. Agranovich, M. I. Vishik, Psevdodifferentsialnye operatory, Nauka, M., 1968

[2] G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, Transl. Math. Monogr., 52, Amer. Math. Soc., Providence, RI, 1981 | MR | MR | Zbl | Zbl

[3] V. P. Mikhailov, “O pervoi kraevoi zadache dlya odnogo klassa gipoellipticheskikh uravnenii”, Matem. sb., 63(105):2 (1964), 238–264 | MR | Zbl

[4] V. P. Mikhailov, “Pervaya kraevaya zadacha dlya nekotorykh poluogranichennykh gipoellipticheskikh uravnenii”, Matem. sb., 64(106):1 (1964), 10–51 | MR | Zbl

[5] A. K. Gushchin, “Some properties of the solutions of the Dirichlet problem for a second-order elliptic equation”, Sb. Math., 189:7 (1998), 1009–1045 | DOI | MR | Zbl

[6] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Siberian Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl

[7] V. P. Mikhailov, “Existence of boundary values for biharmonic functions”, Sb. Math., 195:12 (2004), 1781–1793 | DOI | MR | Zbl

[8] V. P. Mikhailov, “Existence of the boundary value of a polyharmonic function”, Siberian Math. J., 46:5 (2005), 902–912 | DOI | MR | Zbl

[9] O. A. Oleinik, G. A. Iosifyan, “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112(154):4(8) (1980), 588–610 ; O. A. Oleǐnik, G. A. Iosif'jan, “On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary”, Math. USSR-Sb., 40:4 (1981), 527–548 | MR | Zbl | DOI | Zbl

[10] E. M. Landis, G. P. Panasenko, “A variant of a Phragmén–Lindelöf theorem for elliptic equations with coefficients that are periodic functions of all variables except one”, Topics in modern mathematics, Petrovskii Semin., 5 (1985), 133–172 | MR | Zbl

[11] V. A. Kondrat'ev, J. Kopachek, D. M. Lekveishvili, O. A. Olejnik, “Sharp estimates in Hölder spaces and precise Saint-Venant principle for solutions of the biharmonic equation”, Proc. Steklov Inst. Math., 166 (1986), 97–116 | MR | Zbl | Zbl

[12] L. M. Kozhevnikova, “Stabilizatsiya resheniya pervoi smeshannoi zadachi dlya evolyutsionnogo kvaziellipticheskogo uravneniya”, Matem. sb., 196:7 (2005), 67–100 | MR | Zbl

[13] L. M. Kozhevnikova, “Anizotropnye klassy edinstvennosti resheniya zadachi Dirikhle dlya kvaziellipticheskikh uravnenii”, Izv. RAN. Ser. matem., 70:6 (2006), 93–128 | MR | Zbl

[14] V. P. Mikhaǐlov, Partial differential equations, Mir, M., 1978 | MR | MR | Zbl | Zbl

[15] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl

[16] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[17] J. Moser, “On Harnack's theorem for elliptic differential equations”, Comm. Pure Appl. Math, 14:3 (1961), 577–591 | DOI | MR | Zbl