@article{SM_2008_199_8_a2,
author = {L. M. Kozhevnikova},
title = {Behaviour at infinity of solutions of pseudodifferential},
journal = {Sbornik. Mathematics},
pages = {1169--1200},
year = {2008},
volume = {199},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_8_a2/}
}
L. M. Kozhevnikova. Behaviour at infinity of solutions of pseudodifferential. Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1169-1200. http://geodesic.mathdoc.fr/item/SM_2008_199_8_a2/
[1] M. S. Agranovich, M. I. Vishik, Psevdodifferentsialnye operatory, Nauka, M., 1968
[2] G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, Transl. Math. Monogr., 52, Amer. Math. Soc., Providence, RI, 1981 | MR | MR | Zbl | Zbl
[3] V. P. Mikhailov, “O pervoi kraevoi zadache dlya odnogo klassa gipoellipticheskikh uravnenii”, Matem. sb., 63(105):2 (1964), 238–264 | MR | Zbl
[4] V. P. Mikhailov, “Pervaya kraevaya zadacha dlya nekotorykh poluogranichennykh gipoellipticheskikh uravnenii”, Matem. sb., 64(106):1 (1964), 10–51 | MR | Zbl
[5] A. K. Gushchin, “Some properties of the solutions of the Dirichlet problem for a second-order elliptic equation”, Sb. Math., 189:7 (1998), 1009–1045 | DOI | MR | Zbl
[6] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Siberian Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl
[7] V. P. Mikhailov, “Existence of boundary values for biharmonic functions”, Sb. Math., 195:12 (2004), 1781–1793 | DOI | MR | Zbl
[8] V. P. Mikhailov, “Existence of the boundary value of a polyharmonic function”, Siberian Math. J., 46:5 (2005), 902–912 | DOI | MR | Zbl
[9] O. A. Oleinik, G. A. Iosifyan, “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112(154):4(8) (1980), 588–610 ; O. A. Oleǐnik, G. A. Iosif'jan, “On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary”, Math. USSR-Sb., 40:4 (1981), 527–548 | MR | Zbl | DOI | Zbl
[10] E. M. Landis, G. P. Panasenko, “A variant of a Phragmén–Lindelöf theorem for elliptic equations with coefficients that are periodic functions of all variables except one”, Topics in modern mathematics, Petrovskii Semin., 5 (1985), 133–172 | MR | Zbl
[11] V. A. Kondrat'ev, J. Kopachek, D. M. Lekveishvili, O. A. Olejnik, “Sharp estimates in Hölder spaces and precise Saint-Venant principle for solutions of the biharmonic equation”, Proc. Steklov Inst. Math., 166 (1986), 97–116 | MR | Zbl | Zbl
[12] L. M. Kozhevnikova, “Stabilizatsiya resheniya pervoi smeshannoi zadachi dlya evolyutsionnogo kvaziellipticheskogo uravneniya”, Matem. sb., 196:7 (2005), 67–100 | MR | Zbl
[13] L. M. Kozhevnikova, “Anizotropnye klassy edinstvennosti resheniya zadachi Dirikhle dlya kvaziellipticheskikh uravnenii”, Izv. RAN. Ser. matem., 70:6 (2006), 93–128 | MR | Zbl
[14] V. P. Mikhaǐlov, Partial differential equations, Mir, M., 1978 | MR | MR | Zbl | Zbl
[15] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl
[16] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl
[17] J. Moser, “On Harnack's theorem for elliptic differential equations”, Comm. Pure Appl. Math, 14:3 (1961), 577–591 | DOI | MR | Zbl