Convolution equations in many-dimensional domains and on the Heisenberg reduced group
Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1139-1168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Local versions of the Brown-Schreiber-Taylor theorem on spectral analysis in $\mathbb R^n$ are obtained under most general assumptions. This has made it possible, in particular, to prove the equivalence of the global and the local Pompeiu properties for a compact subset $E$ of $\mathbb R^n$ without any assumptions on $E$. Perfect analogues of these results are established for systems of convolution equations on the Heisenberg group $H^n_{\mathrm{red}}$. As an application, for subspaces of $C(H^n_{\mathrm{red}})$ invariant under shifts and unitary transformations a spectral synthesis theorem is proved, analogues of which were known before only for functions of slow growth. Bibliography: 20 titles.
@article{SM_2008_199_8_a1,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Convolution equations in many-dimensional domains and on the {Heisenberg} reduced group},
     journal = {Sbornik. Mathematics},
     pages = {1139--1168},
     year = {2008},
     volume = {199},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_8_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Convolution equations in many-dimensional domains and on the Heisenberg reduced group
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1139
EP  - 1168
VL  - 199
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_8_a1/
LA  - en
ID  - SM_2008_199_8_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Convolution equations in many-dimensional domains and on the Heisenberg reduced group
%J Sbornik. Mathematics
%D 2008
%P 1139-1168
%V 199
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2008_199_8_a1/
%G en
%F SM_2008_199_8_a1
V. V. Volchkov; Vit. V. Volchkov. Convolution equations in many-dimensional domains and on the Heisenberg reduced group. Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1139-1168. http://geodesic.mathdoc.fr/item/SM_2008_199_8_a1/

[1] C. A. Berenstein, D. C. Struppa, “Complex analysis and convolution equations”, Several complex variables. V. Complex analysis in partial differential equations and mathematical physics, Encyclopaedia Math. Sci., 54, Springer-Verlag, Berlin, 1993, 1–108 | MR | MR | Zbl | Zbl

[2] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | MR | Zbl

[3] D. I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 116–120 | DOI | MR | Zbl

[4] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl

[5] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl

[6] L. Hörmander, The analysis of linear partial differential operators, vols. 1, 2, Grundlehren Math. Wiss., 256–257, Springer-Verlag, Berlin, 1983 | MR | MR | MR | MR | Zbl | Zbl

[7] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR | Zbl

[8] G. B. Folland, Harmonic analysis in phase space, Ann. of Math. Stud., 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[9] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Math. Notes, 42, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[10] L. A. Aǐzenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Transl. Math. Monogr., 58, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl | Zbl

[11] S. Thangavelu, “Spherical means and CR functions on the Heisenberg group”, J. Anal. Math., 63 (1994), 255–286 | DOI | MR | Zbl

[12] S. Thangavelu, “Mean periodic functions on phase space and the Pompeiu problem with a twist”, Ann. Inst. Fourier (Grenoble), 45:4 (1995), 1007–1035 | MR | Zbl

[13] C. A. Berenstein, R. Gay, “Le problème de Pompeiu local”, J. Analyse Math., 52:1 (1981), 133–166 | DOI | MR | Zbl

[14] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR | Zbl

[15] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[16] N. Ya. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[17] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vols. I, II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | MR | Zbl | Zbl

[18] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York–Berlin, 1980 | MR | MR | Zbl | Zbl

[19] R. A. Askey, T. H. Koornwinder, W. Schempp (eds.), Special functions: group theoretical aspects and applications, Math. Appl., 18, Reidel Publ., Dordrecht–Boston–Lancaster, 1984 | MR | Zbl

[20] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl