Hardy and Bellman transformations of series with respect to multiplicative systems
Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1111-1137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known Hardy transformation by the method of arithmetic means of Fourier series with respect to multiplicative systems and the Bellman transformation dual to it are investigated. An integral representation of the Hardy operator is given; it is proved that spaces in a certain class that possess a majorant of the modulus of continuity in $L_p[0,1)$, $1\leq p\leq \infty$, $\mathrm{BMO}(\mathbf P,[0,1))$ or $H(\mathbf P,[0,1))$ are stable under the Hardy and Bellman transformations. Criteria for functions with generalized monotonic Fourier coefficients to belong to certain spaces are obtained; these are given in terms of their Fourier coefficients and their Hardy and Bellman transformations. Bibliography: 30 titles.
@article{SM_2008_199_8_a0,
     author = {S. S. Volosivets},
     title = {Hardy and {Bellman} transformations of series with respect to multiplicative systems},
     journal = {Sbornik. Mathematics},
     pages = {1111--1137},
     year = {2008},
     volume = {199},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_8_a0/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Hardy and Bellman transformations of series with respect to multiplicative systems
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1111
EP  - 1137
VL  - 199
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_8_a0/
LA  - en
ID  - SM_2008_199_8_a0
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Hardy and Bellman transformations of series with respect to multiplicative systems
%J Sbornik. Mathematics
%D 2008
%P 1111-1137
%V 199
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2008_199_8_a0/
%G en
%F SM_2008_199_8_a0
S. S. Volosivets. Hardy and Bellman transformations of series with respect to multiplicative systems. Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1111-1137. http://geodesic.mathdoc.fr/item/SM_2008_199_8_a0/

[1] G. H. Hardy, “Notes on some points in the integral calculus”, Messenger of Math., 58 (1928), 50–52 | Zbl

[2] R. Bellman, “A note on a theorem of Hardy on Fourier constants”, Bull. Amer. Math. Soc., 50 (1944), 741–744 | DOI | MR | Zbl

[3] Ch.-T. Loo, “Note on the properties of Fourier coefficients”, Amer. J. Math., 71:2 (1949), 269–282 | DOI | MR | Zbl

[4] A. A. Konyushkov, “O klassakh Lipshitsa”, Izv. AN SSSR. Ser. matem., 21:3 (1957), 423–448 | MR | Zbl

[5] K. F. Andersen, “On the transformation of Fourier coefficients of certain classes of functions”, Pacific J. Math., 100:2 (1982), 243–248 | MR | Zbl

[6] B. I. Golubov, “On a theorem of Bellman on Fourier coefficients”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 321–330 | DOI | MR | Zbl

[7] T. Eisner, “The dyadic Cesàro operators”, Acta Sci. Math. (Szeged), 64:1–2 (1998), 201–214 | MR | Zbl

[8] T. Eisner, “Dyadic Cesàro operators on Hölder spaces”, Functions, series, operators (Budapest, Hungary, 1999), János Bolyai Math. Soc., Budapest, 2002, 213–223 | MR | Zbl

[9] F. Móricz, “The harmonic Cesàro and Copson operators on the spaces $L^p$, $1\leq p\leq \infty$, $H^1$, and $\mathrm{BMO}$”, Acta Sci. Math. (Szeged), 65:1–2 (1999), 293–310 | MR | Zbl

[10] N. T. Tleukhanova, “On the Hardy and Bellman transforms for orthogonal Fourier series”, Math. Notes, 70:3–4 (2001), 577–579 | DOI | MR | Zbl

[11] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L_p$-spaces”, Izv. Math., 64:1 (2000), 93–120 | DOI | MR | Zbl

[12] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[13] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[14] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math., 1568, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[15] J. Tateoka, “The modulus of continuity and the best approximation over the dyadic group”, Acta Math. Hungar., 59:1–2 (1992), 115–120 | DOI | MR | Zbl

[16] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, Izd-vo Mosk. un-ta, M., 1956, 483–522 | MR | Zbl

[17] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44(86):1 (1958), 53–84 | MR | Zbl

[18] G. K. Lebed', “Trigonometric series with coefficients satisfying certain conditions”, Math. USSR-Sb., 3:1 (1967), 91–108 | DOI | MR | Zbl

[19] L. Leindler, “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27:4 (2001), 279–285 | DOI | MR | Zbl

[20] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR | Zbl

[21] J. Pál, P. Simon, “On a generalization of the concept of derivative”, Acta Math. Acad. Sci. Hungar., 29:1–2 (1977), 155–164 | DOI | MR | Zbl

[22] C. W. Onneweer, “Differentiability for Rademacher series on groups”, Acta Sci. Math. (Szeged), 39:1–2 (1977), 121–128 | MR | Zbl

[23] J. Pál, P. Simon, “On the generalized Butzer–Wagner type a.e.differentiability of integral function”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 20 (1977), 157–165 | MR | Zbl

[24] B. I. Golubov, “A modified strong dyadic integral and derivative”, Sb. Math., 193:4 (2002), 507–529 | DOI | MR | Zbl

[25] S. S. Volosivets, “The modified multiplicative integral and derivative of arbitrary order on the semiaxis”, Izv. Math., 70:2 (2006), 211–231 | DOI | MR | Zbl

[26] P. L. Ul'janov, “The imbedding of certain function classes $H_p^\omega$”, Math. USSR-Izv., 2:3 (1968), 601–637 | DOI | MR | Zbl | Zbl

[27] W.-S. Young, “Mean convergence of generalized Walsh–Fourier series”, Trans. Amer. Math. Soc., 218 (1976), 311–320 | DOI | MR | Zbl

[28] A. Zygmund, Trigonometric series, vols. I, II, Cambridge Univ. Press, New York, 1959 | MR | Zbl | Zbl

[29] Ch. Watari, “On generalized Walsh Fourier series”, Tohoku Math. J. (2), 10:3 (1958), 211–241 | DOI | MR | Zbl

[30] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl