@article{SM_2008_199_8_a0,
author = {S. S. Volosivets},
title = {Hardy and {Bellman} transformations of series with respect to multiplicative systems},
journal = {Sbornik. Mathematics},
pages = {1111--1137},
year = {2008},
volume = {199},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_8_a0/}
}
S. S. Volosivets. Hardy and Bellman transformations of series with respect to multiplicative systems. Sbornik. Mathematics, Tome 199 (2008) no. 8, pp. 1111-1137. http://geodesic.mathdoc.fr/item/SM_2008_199_8_a0/
[1] G. H. Hardy, “Notes on some points in the integral calculus”, Messenger of Math., 58 (1928), 50–52 | Zbl
[2] R. Bellman, “A note on a theorem of Hardy on Fourier constants”, Bull. Amer. Math. Soc., 50 (1944), 741–744 | DOI | MR | Zbl
[3] Ch.-T. Loo, “Note on the properties of Fourier coefficients”, Amer. J. Math., 71:2 (1949), 269–282 | DOI | MR | Zbl
[4] A. A. Konyushkov, “O klassakh Lipshitsa”, Izv. AN SSSR. Ser. matem., 21:3 (1957), 423–448 | MR | Zbl
[5] K. F. Andersen, “On the transformation of Fourier coefficients of certain classes of functions”, Pacific J. Math., 100:2 (1982), 243–248 | MR | Zbl
[6] B. I. Golubov, “On a theorem of Bellman on Fourier coefficients”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 321–330 | DOI | MR | Zbl
[7] T. Eisner, “The dyadic Cesàro operators”, Acta Sci. Math. (Szeged), 64:1–2 (1998), 201–214 | MR | Zbl
[8] T. Eisner, “Dyadic Cesàro operators on Hölder spaces”, Functions, series, operators (Budapest, Hungary, 1999), János Bolyai Math. Soc., Budapest, 2002, 213–223 | MR | Zbl
[9] F. Móricz, “The harmonic Cesàro and Copson operators on the spaces $L^p$, $1\leq p\leq \infty$, $H^1$, and $\mathrm{BMO}$”, Acta Sci. Math. (Szeged), 65:1–2 (1999), 293–310 | MR | Zbl
[10] N. T. Tleukhanova, “On the Hardy and Bellman transforms for orthogonal Fourier series”, Math. Notes, 70:3–4 (2001), 577–579 | DOI | MR | Zbl
[11] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L_p$-spaces”, Izv. Math., 64:1 (2000), 93–120 | DOI | MR | Zbl
[12] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl
[13] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl
[14] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math., 1568, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[15] J. Tateoka, “The modulus of continuity and the best approximation over the dyadic group”, Acta Math. Hungar., 59:1–2 (1992), 115–120 | DOI | MR | Zbl
[16] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, Izd-vo Mosk. un-ta, M., 1956, 483–522 | MR | Zbl
[17] A. A. Konyushkov, “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44(86):1 (1958), 53–84 | MR | Zbl
[18] G. K. Lebed', “Trigonometric series with coefficients satisfying certain conditions”, Math. USSR-Sb., 3:1 (1967), 91–108 | DOI | MR | Zbl
[19] L. Leindler, “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27:4 (2001), 279–285 | DOI | MR | Zbl
[20] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR | Zbl
[21] J. Pál, P. Simon, “On a generalization of the concept of derivative”, Acta Math. Acad. Sci. Hungar., 29:1–2 (1977), 155–164 | DOI | MR | Zbl
[22] C. W. Onneweer, “Differentiability for Rademacher series on groups”, Acta Sci. Math. (Szeged), 39:1–2 (1977), 121–128 | MR | Zbl
[23] J. Pál, P. Simon, “On the generalized Butzer–Wagner type a.e.differentiability of integral function”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 20 (1977), 157–165 | MR | Zbl
[24] B. I. Golubov, “A modified strong dyadic integral and derivative”, Sb. Math., 193:4 (2002), 507–529 | DOI | MR | Zbl
[25] S. S. Volosivets, “The modified multiplicative integral and derivative of arbitrary order on the semiaxis”, Izv. Math., 70:2 (2006), 211–231 | DOI | MR | Zbl
[26] P. L. Ul'janov, “The imbedding of certain function classes $H_p^\omega$”, Math. USSR-Izv., 2:3 (1968), 601–637 | DOI | MR | Zbl | Zbl
[27] W.-S. Young, “Mean convergence of generalized Walsh–Fourier series”, Trans. Amer. Math. Soc., 218 (1976), 311–320 | DOI | MR | Zbl
[28] A. Zygmund, Trigonometric series, vols. I, II, Cambridge Univ. Press, New York, 1959 | MR | Zbl | Zbl
[29] Ch. Watari, “On generalized Walsh Fourier series”, Tohoku Math. J. (2), 10:3 (1958), 211–241 | DOI | MR | Zbl
[30] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl