The kernel of Laplace-Beltrami operators
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1071-1087

Voir la notice de l'article provenant de la source Math-Net.Ru

An isomorphism is described for the kernel of the Laplace operator $\Delta^{\!\Lambda}$ (determined by a Lagrangian plane $\Lambda\subset\mathbb C^k\oplus\mathbb C^k$) with potential $\sum_{j=1}^kc_j\delta_{q_j}(x)$ on a manifold. The isomorphism is given by $\Gamma\colon\ker\Delta^{\!\Lambda}\to\Lambda\cap\nobreak L$, where $L$ is an (explicitly calculated) Lagrangian plane. A similar isomorphism also holds for the Laplace operator on a decorated graph. The inequality $1\le\dim\ker\Delta^{\!\Lambda_0}\le n-v+2$ is established for the Laplace operator $\Delta^{\!\Lambda_0}$ on a decorated graph (obtained by decorating a connected finite graph with $n$ edges and $v$ vertices) with ‘continuity’ conditions. It is also shown that the quantity $n-v+1-\dim\ker\Delta^{\!\Lambda_0}$ does not decrease when new edges or manifolds are added. Bibliography: 12 titles.
@article{SM_2008_199_7_a6,
     author = {A. A. Tolchennikov},
     title = {The kernel of {Laplace-Beltrami} operators},
     journal = {Sbornik. Mathematics},
     pages = {1071--1087},
     publisher = {mathdoc},
     volume = {199},
     number = {7},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/}
}
TY  - JOUR
AU  - A. A. Tolchennikov
TI  - The kernel of Laplace-Beltrami operators
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1071
EP  - 1087
VL  - 199
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/
LA  - en
ID  - SM_2008_199_7_a6
ER  - 
%0 Journal Article
%A A. A. Tolchennikov
%T The kernel of Laplace-Beltrami operators
%J Sbornik. Mathematics
%D 2008
%P 1071-1087
%V 199
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/
%G en
%F SM_2008_199_7_a6
A. A. Tolchennikov. The kernel of Laplace-Beltrami operators. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1071-1087. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/