@article{SM_2008_199_7_a6,
author = {A. A. Tolchennikov},
title = {The kernel of {Laplace-Beltrami} operators},
journal = {Sbornik. Mathematics},
pages = {1071--1087},
year = {2008},
volume = {199},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/}
}
A. A. Tolchennikov. The kernel of Laplace-Beltrami operators. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1071-1087. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/
[1] R. de L. Kronig, W. G. Penney, “Quantum mechanics of electrons in crystal lattices”, Proc. Roy. Soc. A, 130:814 (1931), 499–513 | DOI | Zbl
[2] F. A. Berezin, L. D. Faddeev, “A remark on Schrödinger's equation with a singular potential”, Soviet Math. Dokl., 2 (1961), 372–375 | MR | Zbl
[3] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts Monogr. Phys., Springer-Verlag, New York, 1988 | MR | MR | Zbl
[4] I. S. Lobanov, Spektralnye svoistva gamiltonianov yavnoreshaemykh modelei mezoskopicheskikh struktur: dekorirovannye kvantovye grafy i kvantovye tochki, Dis. ... kand. fiz.-matem. nauk, Mordovskii gos. un-t, Saransk, 2005
[5] J. Brüning, V. A. Geyler, “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys, 44:2 (2003), 371–405 | DOI | MR | Zbl
[6] S. Roganova, Direct and inverse spectral problems for hybrid manifolds, Dissertation, Humboldt Universitat zu Berlin, 2007
[7] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl
[8] M. A. Naimark, Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969 | MR | MR | Zbl
[9] V. A. Geiler, V. A. Margulis, I. I. Chuchaev, “Potentials of zero radius and Carleman operators”, Siberian Math. J., 36:4 (1995), 714–726 | DOI | MR | Zbl
[10] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts Monogr. Phys., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl
[11] H. Donnelly, “Eigenfunctions of the Laplacian on compact Riemannian manifolds”, Asian J. Math., 10:1 (2006), 115–125 | MR | Zbl
[12] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl | Zbl