The kernel of Laplace-Beltrami operators
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1071-1087 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An isomorphism is described for the kernel of the Laplace operator $\Delta^{\!\Lambda}$ (determined by a Lagrangian plane $\Lambda\subset\mathbb C^k\oplus\mathbb C^k$) with potential $\sum_{j=1}^kc_j\delta_{q_j}(x)$ on a manifold. The isomorphism is given by $\Gamma\colon\ker\Delta^{\!\Lambda}\to\Lambda\cap\nobreak L$, where $L$ is an (explicitly calculated) Lagrangian plane. A similar isomorphism also holds for the Laplace operator on a decorated graph. The inequality $1\le\dim\ker\Delta^{\!\Lambda_0}\le n-v+2$ is established for the Laplace operator $\Delta^{\!\Lambda_0}$ on a decorated graph (obtained by decorating a connected finite graph with $n$ edges and $v$ vertices) with ‘continuity’ conditions. It is also shown that the quantity $n-v+1-\dim\ker\Delta^{\!\Lambda_0}$ does not decrease when new edges or manifolds are added. Bibliography: 12 titles.
@article{SM_2008_199_7_a6,
     author = {A. A. Tolchennikov},
     title = {The kernel of {Laplace-Beltrami} operators},
     journal = {Sbornik. Mathematics},
     pages = {1071--1087},
     year = {2008},
     volume = {199},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/}
}
TY  - JOUR
AU  - A. A. Tolchennikov
TI  - The kernel of Laplace-Beltrami operators
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1071
EP  - 1087
VL  - 199
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/
LA  - en
ID  - SM_2008_199_7_a6
ER  - 
%0 Journal Article
%A A. A. Tolchennikov
%T The kernel of Laplace-Beltrami operators
%J Sbornik. Mathematics
%D 2008
%P 1071-1087
%V 199
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/
%G en
%F SM_2008_199_7_a6
A. A. Tolchennikov. The kernel of Laplace-Beltrami operators. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1071-1087. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/

[1] R. de L. Kronig, W. G. Penney, “Quantum mechanics of electrons in crystal lattices”, Proc. Roy. Soc. A, 130:814 (1931), 499–513 | DOI | Zbl

[2] F. A. Berezin, L. D. Faddeev, “A remark on Schrödinger's equation with a singular potential”, Soviet Math. Dokl., 2 (1961), 372–375 | MR | Zbl

[3] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts Monogr. Phys., Springer-Verlag, New York, 1988 | MR | MR | Zbl

[4] I. S. Lobanov, Spektralnye svoistva gamiltonianov yavnoreshaemykh modelei mezoskopicheskikh struktur: dekorirovannye kvantovye grafy i kvantovye tochki, Dis. ... kand. fiz.-matem. nauk, Mordovskii gos. un-t, Saransk, 2005

[5] J. Brüning, V. A. Geyler, “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys, 44:2 (2003), 371–405 | DOI | MR | Zbl

[6] S. Roganova, Direct and inverse spectral problems for hybrid manifolds, Dissertation, Humboldt Universitat zu Berlin, 2007

[7] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl

[8] M. A. Naimark, Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969 | MR | MR | Zbl

[9] V. A. Geiler, V. A. Margulis, I. I. Chuchaev, “Potentials of zero radius and Carleman operators”, Siberian Math. J., 36:4 (1995), 714–726 | DOI | MR | Zbl

[10] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts Monogr. Phys., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl

[11] H. Donnelly, “Eigenfunctions of the Laplacian on compact Riemannian manifolds”, Asian J. Math., 10:1 (2006), 115–125 | MR | Zbl

[12] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl | Zbl