The kernel of Laplace-Beltrami operators
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1071-1087
Voir la notice de l'article provenant de la source Math-Net.Ru
An isomorphism is described for the kernel of the Laplace
operator $\Delta^{\!\Lambda}$ (determined by a Lagrangian plane
$\Lambda\subset\mathbb C^k\oplus\mathbb C^k$) with potential
$\sum_{j=1}^kc_j\delta_{q_j}(x)$ on a manifold.
The isomorphism is given by
$\Gamma\colon\ker\Delta^{\!\Lambda}\to\Lambda\cap\nobreak L$,
where $L$ is an (explicitly calculated) Lagrangian plane. A similar isomorphism also holds for the Laplace operator on a decorated graph.
The inequality $1\le\dim\ker\Delta^{\!\Lambda_0}\le n-v+2$ is established
for the Laplace operator
$\Delta^{\!\Lambda_0}$ on a decorated graph (obtained by
decorating a connected finite graph with $n$ edges and
$v$ vertices) with ‘continuity’ conditions. It is
also shown that the quantity $n-v+1-\dim\ker\Delta^{\!\Lambda_0}$ does not
decrease when new edges or manifolds are added.
Bibliography: 12 titles.
@article{SM_2008_199_7_a6,
author = {A. A. Tolchennikov},
title = {The kernel of {Laplace-Beltrami} operators},
journal = {Sbornik. Mathematics},
pages = {1071--1087},
publisher = {mathdoc},
volume = {199},
number = {7},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/}
}
A. A. Tolchennikov. The kernel of Laplace-Beltrami operators. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1071-1087. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a6/