On a new compactification of the moduli of vector bundles on a surface
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1051-1070 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new compactification of the moduli scheme of Gieseker-stable vector bundles with prescribed Hilbert polynomial on a smooth projective polarized surface $(S,H)$ defined over a field $k=\bar k$ of characteristic zero is constructed. The families of locally free sheaves on the surface $S$ are completed by locally free sheaves on surfaces that are certain modifications of $S$. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. The case when the Gieseker-Maruyama space is a fine moduli space is considered. Bibliography: 12 titles.
@article{SM_2008_199_7_a5,
     author = {N. V. Timofeeva},
     title = {On a new compactification of the moduli of vector bundles on a~surface},
     journal = {Sbornik. Mathematics},
     pages = {1051--1070},
     year = {2008},
     volume = {199},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On a new compactification of the moduli of vector bundles on a surface
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1051
EP  - 1070
VL  - 199
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/
LA  - en
ID  - SM_2008_199_7_a5
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On a new compactification of the moduli of vector bundles on a surface
%J Sbornik. Mathematics
%D 2008
%P 1051-1070
%V 199
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/
%G en
%F SM_2008_199_7_a5
N. V. Timofeeva. On a new compactification of the moduli of vector bundles on a surface. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1051-1070. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/

[1] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. of Math. (2), 106:1 (1977), 45–60 | DOI | MR | Zbl

[2] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18:3 (1978), 557–614 | MR | Zbl

[3] G. Ellingsrud, L. Göttsche, “Variation of moduli space and Donaldson invariants under change of polarization”, J. Reine Angew. Math., 467 (1995), 1–49 | MR | Zbl

[4] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Vieweg, Braunschweig, 1997 | MR | Zbl

[5] N. V. Timofeeva, “A compactification of the moduli variety of stable vector 2-bundles on a surface in the Hilbert scheme”, Math. Notes, 82:5–6 (2007), 677–690 | DOI

[6] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero. I”, Ann. of Math. (2), 79:1 (1964), 109–203 | DOI | MR | Zbl

[7] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, Berlin–New York, 1995 | MR | Zbl

[8] A. S. Tikhomirov, “The variety of complete pairs of zero-dimensional subschemes of an algebraic surface”, Izv. Math., 61:6 (1997), 1265–1291 | DOI | MR | Zbl

[9] W. Barth, “Some properties of stable rank-2 vector bundles on $\mathbb P_n$”, Math. Ann., 226:2 (1977), 125–150 | DOI | MR | Zbl

[10] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl

[11] R. Lazarsfeld, Positivity in algebraic geometry, I. Classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. (3), 48, Springer-Verlag, Berlin, 2004 | MR | Zbl

[12] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl