On a new compactification of the moduli of vector bundles on a~surface
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1051-1070

Voir la notice de l'article provenant de la source Math-Net.Ru

A new compactification of the moduli scheme of Gieseker-stable vector bundles with prescribed Hilbert polynomial on a smooth projective polarized surface $(S,H)$ defined over a field $k=\bar k$ of characteristic zero is constructed. The families of locally free sheaves on the surface $S$ are completed by locally free sheaves on surfaces that are certain modifications of $S$. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. The case when the Gieseker-Maruyama space is a fine moduli space is considered. Bibliography: 12 titles.
@article{SM_2008_199_7_a5,
     author = {N. V. Timofeeva},
     title = {On a new compactification of the moduli of vector bundles on a~surface},
     journal = {Sbornik. Mathematics},
     pages = {1051--1070},
     publisher = {mathdoc},
     volume = {199},
     number = {7},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On a new compactification of the moduli of vector bundles on a~surface
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1051
EP  - 1070
VL  - 199
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/
LA  - en
ID  - SM_2008_199_7_a5
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On a new compactification of the moduli of vector bundles on a~surface
%J Sbornik. Mathematics
%D 2008
%P 1051-1070
%V 199
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/
%G en
%F SM_2008_199_7_a5
N. V. Timofeeva. On a new compactification of the moduli of vector bundles on a~surface. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1051-1070. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/