On a new compactification of the moduli of vector bundles on a~surface
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1051-1070
Voir la notice de l'article provenant de la source Math-Net.Ru
A new compactification of the moduli scheme of Gieseker-stable vector bundles with prescribed
Hilbert polynomial on a smooth projective polarized surface $(S,H)$ defined over a field $k=\bar k$ of characteristic zero is constructed.
The families of locally free sheaves on the surface $S$ are completed by locally free sheaves on surfaces that are certain modifications of $S$. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. The case when the Gieseker-Maruyama space is a fine moduli space is considered.
Bibliography: 12 titles.
@article{SM_2008_199_7_a5,
author = {N. V. Timofeeva},
title = {On a new compactification of the moduli of vector bundles on a~surface},
journal = {Sbornik. Mathematics},
pages = {1051--1070},
publisher = {mathdoc},
volume = {199},
number = {7},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/}
}
N. V. Timofeeva. On a new compactification of the moduli of vector bundles on a~surface. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1051-1070. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a5/