Removability of an isolated singularity for anisotropic elliptic equations with absorption
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1033-1050 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the investigation of solutions with a point singularity of the general elliptic equation $$ -\sum_{i=1}^n\frac\partial{\partial x_i} \biggl(\biggl|\frac{\partial u}{\partial x_i}\biggr|^{p_i-2}\frac{\partial u}{\partial x_i}\biggr)+|u|^{q-1}u=0. $$ A method for deriving new pointwise estimates for the solution and integral estimates for the gradient of the solution is developed. Precise conditions are established on the behaviour of the term characterizing the absorption to ensure the non-existence of solutions with a point singularity. Bibliography: 11 titles.
@article{SM_2008_199_7_a4,
     author = {I. I. Skrypnik},
     title = {Removability of an isolated singularity for anisotropic elliptic equations with absorption},
     journal = {Sbornik. Mathematics},
     pages = {1033--1050},
     year = {2008},
     volume = {199},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a4/}
}
TY  - JOUR
AU  - I. I. Skrypnik
TI  - Removability of an isolated singularity for anisotropic elliptic equations with absorption
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1033
EP  - 1050
VL  - 199
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a4/
LA  - en
ID  - SM_2008_199_7_a4
ER  - 
%0 Journal Article
%A I. I. Skrypnik
%T Removability of an isolated singularity for anisotropic elliptic equations with absorption
%J Sbornik. Mathematics
%D 2008
%P 1033-1050
%V 199
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a4/
%G en
%F SM_2008_199_7_a4
I. I. Skrypnik. Removability of an isolated singularity for anisotropic elliptic equations with absorption. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1033-1050. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a4/

[1] H. Brezis, L. Veron, “Removable singularities for some nonlinear elliptic equations”, Arch. Rational Mech. Anal, 75:1 (1980), 1–6 | DOI | MR | Zbl

[2] L. Véron, Singularities of solutions of second order quasilinear equations, Pitman Res. Notes Math. Ser., 353, Longman, Harlow, 1996 | MR | Zbl

[3] I. I. Skrypnik, “Lokalnoe povedenie reshenii kvazilineinykh ellipticheskikh uravnenii s absorbtsiei”, Tr. In-ta matem. i mekh. NAN Ukrainy, 9 (2004), 183–190 | MR | Zbl

[4] I. I. Skrypnik, “Removability of isolated singularities of solutions of quasilinear parabolic equations with absorption”, Sb. Math., 196:11 (2005), 1693–1713 | DOI | MR | Zbl

[5] I. M. Kolodij, “The boundedness of generalized solutions of elliptic differential equations”, Moscow Univ. Math. Bull., 25:5 (1970), 31–37 | MR | Zbl | Zbl

[6] N. Fusco, C. Sbordone, “Some remarks on the regularity of minima of anisotropic integrals”, Comm. Partial Differential Equations, 18:1–2 (1993), 153–167 | DOI | MR | Zbl

[7] M. Giaquinta, “Growth conditions and regularity, a counterexample”, Manuscripta Math., 59:2 (1987), 245–248 | DOI | MR | Zbl

[8] P. Marcellini, Un exemple de solution discontinue d'un problem variationelly dans l cas scalaire, Preprint No 11, Instituto Matematico “Ulisse Dini” Universita di Firenze, Firenze, 1987

[9] Yu. V. Namlyeyeva, A. E. Shishkov, I. I. Skrypnik, “Isolated singularities of solutions of quasilinear anisotropic elliptic equations”, Adv. Nonlinear Stud., 6:4 (2006), 617–641 | MR | Zbl

[10] F. Nicolosi, I. V. Skrypnik, I. I. Skrypnik, “Precise point-wise growth conditions for removable isolated singularities”, Comm. Partial Differential Equations, 28:3–4 (2003), 677–696 | DOI | MR | Zbl

[11] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Transl. Math. Monogr., 139, Amer. Math. Soc., Providence, RI, 1994 | MR | MR | Zbl | Zbl