Removability of an isolated singularity for anisotropic elliptic equations with absorption
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1033-1050

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the investigation of solutions with a point singularity of the general elliptic equation $$ -\sum_{i=1}^n\frac\partial{\partial x_i} \biggl(\biggl|\frac{\partial u}{\partial x_i}\biggr|^{p_i-2}\frac{\partial u}{\partial x_i}\biggr)+|u|^{q-1}u=0. $$ A method for deriving new pointwise estimates for the solution and integral estimates for the gradient of the solution is developed. Precise conditions are established on the behaviour of the term characterizing the absorption to ensure the non-existence of solutions with a point singularity. Bibliography: 11 titles.
@article{SM_2008_199_7_a4,
     author = {I. I. Skrypnik},
     title = {Removability of an isolated singularity for anisotropic elliptic equations with absorption},
     journal = {Sbornik. Mathematics},
     pages = {1033--1050},
     publisher = {mathdoc},
     volume = {199},
     number = {7},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a4/}
}
TY  - JOUR
AU  - I. I. Skrypnik
TI  - Removability of an isolated singularity for anisotropic elliptic equations with absorption
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1033
EP  - 1050
VL  - 199
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a4/
LA  - en
ID  - SM_2008_199_7_a4
ER  - 
%0 Journal Article
%A I. I. Skrypnik
%T Removability of an isolated singularity for anisotropic elliptic equations with absorption
%J Sbornik. Mathematics
%D 2008
%P 1033-1050
%V 199
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a4/
%G en
%F SM_2008_199_7_a4
I. I. Skrypnik. Removability of an isolated singularity for anisotropic elliptic equations with absorption. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1033-1050. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a4/