An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1009-1031
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit formula expressing the number of classes of primitive hyperbolic elements in the congruence subgroup $\Gamma_0(N)$ (the number of closed geodesics) in terms of the number of equivalence classes of indefinite binary quadratic forms is obtained. The well-known formulae for the numbers of classes of elliptic
and parabolic elements in $\Gamma_0(N)$ are special cases of this formula.
Bibliography: 11 titles.
@article{SM_2008_199_7_a3,
author = {V. V. Golovchanskii and M. N. Smotrov},
title = {An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$},
journal = {Sbornik. Mathematics},
pages = {1009--1031},
publisher = {mathdoc},
volume = {199},
number = {7},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/}
}
TY - JOUR AU - V. V. Golovchanskii AU - M. N. Smotrov TI - An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ JO - Sbornik. Mathematics PY - 2008 SP - 1009 EP - 1031 VL - 199 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/ LA - en ID - SM_2008_199_7_a3 ER -
%0 Journal Article %A V. V. Golovchanskii %A M. N. Smotrov %T An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ %J Sbornik. Mathematics %D 2008 %P 1009-1031 %V 199 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/ %G en %F SM_2008_199_7_a3
V. V. Golovchanskii; M. N. Smotrov. An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1009-1031. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/