An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1009-1031 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An explicit formula expressing the number of classes of primitive hyperbolic elements in the congruence subgroup $\Gamma_0(N)$ (the number of closed geodesics) in terms of the number of equivalence classes of indefinite binary quadratic forms is obtained. The well-known formulae for the numbers of classes of elliptic and parabolic elements in $\Gamma_0(N)$ are special cases of this formula. Bibliography: 11 titles.
@article{SM_2008_199_7_a3,
     author = {V. V. Golovchanskii and M. N. Smotrov},
     title = {An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$},
     journal = {Sbornik. Mathematics},
     pages = {1009--1031},
     year = {2008},
     volume = {199},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/}
}
TY  - JOUR
AU  - V. V. Golovchanskii
AU  - M. N. Smotrov
TI  - An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1009
EP  - 1031
VL  - 199
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/
LA  - en
ID  - SM_2008_199_7_a3
ER  - 
%0 Journal Article
%A V. V. Golovchanskii
%A M. N. Smotrov
%T An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$
%J Sbornik. Mathematics
%D 2008
%P 1009-1031
%V 199
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/
%G en
%F SM_2008_199_7_a3
V. V. Golovchanskii; M. N. Smotrov. An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1009-1031. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/

[1] P. S. Schaller, “Geometry of Riemann surfaces based on closed geodesics”, Bull. Amer. Math. Soc., 35:3 (1998), 193–214 | DOI | MR | Zbl

[2] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan., 11, Iwanami Shoten, Tokyo; Princeton Univ. Press, Princeton, NJ, 1971 | MR | MR | Zbl | Zbl

[3] N. V. Kuznetsov, “The distribution of norms of primitive hyperbolic classes of the modular group and asymptotic formulas for the eigenvalues of the Laplace–Beltrami operator on a fundamental region of the modular group”, Soviet Math. Dokl., 19 (1978), 1053–1056 | MR | Zbl

[4] P. G. L. Dirichlet, Vorlesungen über Zahlentheorie, Vieweg, Braunschweig, 1894 | MR | Zbl

[5] P. Sarnak, “Class numbers of indefinite binary quadratic forms”, J. Number Theory, 15:2 (1982), 229–247 | DOI | MR | Zbl

[6] V. V. Golovchanskii, M. N. Smotrov, Yavnaya formula dlya chisla klassov primitivnykh sopryazhennykh giperbolicheskikh elementov gruppy $\Gamma_0(N)$, Preprint, KhO IPM, Khabarovsk, 1994

[7] N. G. Chudakov, Vvedenie v teoriyu $L$-funktsiii Dirikhle, OGIZ, M.–L., 1947 | MR | Zbl

[8] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957 | MR | MR | Zbl | Zbl

[9] H. Davenport, Multiplicative number theory, Markham, Chicago, IL, 1967 | MR | MR | Zbl | Zbl

[10] P. Sarnak, Prime geodesic theorems, Thesis Ph. D., Stanford University, 1980

[11] W. Luo, Z. Rudnick, P. Sarnak, “On Selberg's eigenvalue conjecture”, Geom. Funct. Anal., 5:2 (1995), 387–401 | DOI | MR | Zbl