An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1009-1031

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit formula expressing the number of classes of primitive hyperbolic elements in the congruence subgroup $\Gamma_0(N)$ (the number of closed geodesics) in terms of the number of equivalence classes of indefinite binary quadratic forms is obtained. The well-known formulae for the numbers of classes of elliptic and parabolic elements in $\Gamma_0(N)$ are special cases of this formula. Bibliography: 11 titles.
@article{SM_2008_199_7_a3,
     author = {V. V. Golovchanskii and M. N. Smotrov},
     title = {An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$},
     journal = {Sbornik. Mathematics},
     pages = {1009--1031},
     publisher = {mathdoc},
     volume = {199},
     number = {7},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/}
}
TY  - JOUR
AU  - V. V. Golovchanskii
AU  - M. N. Smotrov
TI  - An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1009
EP  - 1031
VL  - 199
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/
LA  - en
ID  - SM_2008_199_7_a3
ER  - 
%0 Journal Article
%A V. V. Golovchanskii
%A M. N. Smotrov
%T An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$
%J Sbornik. Mathematics
%D 2008
%P 1009-1031
%V 199
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/
%G en
%F SM_2008_199_7_a3
V. V. Golovchanskii; M. N. Smotrov. An explicit formula for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 1009-1031. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a3/