Finite-dimensional simple graded algebras
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 965-983 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $R$ be a finite-dimensional algebra over an algebraically closed field $F$ graded by an arbitrary group $G$. In the paper it is proved that if the characteristic of $F$ is zero or does not divide the order of any finite subgroup of $G$, then $R$ is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field. Bibliography: 24 titles.
@article{SM_2008_199_7_a1,
     author = {Yu. A. Bahturin and M. V. Zaicev and S. K. Sehgal},
     title = {Finite-dimensional simple graded algebras},
     journal = {Sbornik. Mathematics},
     pages = {965--983},
     year = {2008},
     volume = {199},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/}
}
TY  - JOUR
AU  - Yu. A. Bahturin
AU  - M. V. Zaicev
AU  - S. K. Sehgal
TI  - Finite-dimensional simple graded algebras
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 965
EP  - 983
VL  - 199
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/
LA  - en
ID  - SM_2008_199_7_a1
ER  - 
%0 Journal Article
%A Yu. A. Bahturin
%A M. V. Zaicev
%A S. K. Sehgal
%T Finite-dimensional simple graded algebras
%J Sbornik. Mathematics
%D 2008
%P 965-983
%V 199
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/
%G en
%F SM_2008_199_7_a1
Yu. A. Bahturin; M. V. Zaicev; S. K. Sehgal. Finite-dimensional simple graded algebras. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 965-983. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/

[1] I. L. Kantor, “Nekotorye obobscheniya iordanovykh algebr”, Tr. sem. po vektornomu i tenzornomu analizu, 16 (1972), 407–499 | MR | Zbl

[2] V. G. Kats, “Graduated Lie algebras and symmetric spaces”, Funct. Anal. Appl., 2:2 (1968), 182–183 | DOI | MR | Zbl

[3] A. Elduque, “Gradings on octonions”, J. Algebra, 207:1 (1998), 342–354 | DOI | MR | Zbl

[4] Yu. Bahturin, I. Shestakov, “Gradings of simple Jordan algebras and their relation to the gradings of simple associative algebras”, Comm. Algebra, 29:9 (2001), 4095–4102 | DOI | MR | Zbl

[5] Yu. A. Bahturin, I. P. Shestakov, M. V. Zaicev, “Gradings on simple Jordan and Lie algebras”, J. Algebra, 283:2 (2005), 849–868 | DOI | MR | Zbl

[6] Yu. A. Bahturin, M. V. Zaicev, “Group gradings on simple Lie algebras of type “A””, J. Lie Theory, 16:4 (2006), 719–742 | MR | Zbl

[7] Yu. Bahturin, I. Shestakov, Group gradings on Jordan algebras $M_n^{(+)}$, preprint ARTI-Mat2005-22, Sao Paulo, Brasil

[8] O. N. Smirnov, “Simple associative algebras with finite $\mathbf Z$-grading”, J. Algebra, 196:1 (1997), 171–184 | DOI | MR | Zbl

[9] S. Dăscălescu, B. Ion, C. Năstăsescu, J. Rios Montes, “Group gradings on full matrix rings”, J. Algebra, 220:2 (1999), 709–728 | DOI | MR | Zbl

[10] M. V. Zaicev, S. K. Sehgal, “Finite gradings of simple Artinian rings”, Moscow Univ. Math. Bull., 56:3 (2001), 21–24 | MR | Zbl

[11] Yu. A. Bahturin, S. K. Sehgal, M. V. Zaicev, “Group gradings on associative algebras”, J. Algebra, 241:2 (2001), 677–698 | DOI | MR | Zbl

[12] Yu. A. Bahturin, M. V. Zaicev, “Group gradings on matrix algebras”, Canad. Math. Bull., 45:4 (2002), 499–508 | MR | Zbl

[13] C. T. C. Wall, “Graded Brauer groups”, J. Reine Angew. Math., 213 (1964), 187–199 | MR | Zbl

[14] Yu. A. Bahturin, S. K. Sehgal, M. V. Zaicev, Finite dimensional graded simple algebras, arXiv: math/0512202

[15] C. Năstăsescu, F. van Oystaeyen, Graded ring theory, North-Holland Math. Library, 28, North-Holland, Amsterdam–New York–Oxford, 1982 | MR | Zbl

[16] D. S. Passman, The algebraic structure of group rings, Pure Appl. Math., Wiley, New York–London–Sydney, 1977 | MR | Zbl

[17] D. S. Passman, Infinite crossed products, Pure Appl. Math., 135, Academic Press, Boston, MA, 1989 | MR | Zbl

[18] I. N. Khershtein, Nekommutativnye koltsa, Mir, M., 1972 ; I. N. Herstein, Noncommutative rings, Wiley, New York, 1968 | MR | Zbl | MR | Zbl

[19] S. K. Sehgal, Topics in group rings, Dekker, New York–Basel, 1978 | MR | Zbl

[20] N. Jacobson, The theory of rings, Amer. Math. Soc., New York, 1943 | MR | Zbl

[21] M. Cohen, S. Montgomery, “Group-graded rings, smash products, and group actions”, Trans. Amer. Math. Soc., 282:1 (1984), 237–258 | DOI | MR | Zbl

[22] N. Jacobson, Basic algebra, II, Freeman, New York, 1989 | MR | Zbl

[23] E. Jespers, “Simple Abelian-group graded rings”, Boll. Un. Mat. Ital. A (7), 3:1 (1989), 103–106 | MR | Zbl

[24] E. Jespers, “Simple graded rings”, Comm. Algebra, 21:7 (1993), 2437–2444 | DOI | MR | Zbl