Finite-dimensional simple graded algebras
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 965-983
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a finite-dimensional algebra over an algebraically closed field $F$ graded
by an arbitrary group $G$. In the paper it is proved that if the characteristic of $F$ is zero or does not divide the order of any finite subgroup of $G$, then $R$ is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field.
Bibliography: 24 titles.
@article{SM_2008_199_7_a1,
author = {Yu. A. Bahturin and M. V. Zaicev and S. K. Sehgal},
title = {Finite-dimensional simple graded algebras},
journal = {Sbornik. Mathematics},
pages = {965--983},
publisher = {mathdoc},
volume = {199},
number = {7},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/}
}
Yu. A. Bahturin; M. V. Zaicev; S. K. Sehgal. Finite-dimensional simple graded algebras. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 965-983. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/