Finite-dimensional simple graded algebras
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 965-983

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a finite-dimensional algebra over an algebraically closed field $F$ graded by an arbitrary group $G$. In the paper it is proved that if the characteristic of $F$ is zero or does not divide the order of any finite subgroup of $G$, then $R$ is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field. Bibliography: 24 titles.
@article{SM_2008_199_7_a1,
     author = {Yu. A. Bahturin and M. V. Zaicev and S. K. Sehgal},
     title = {Finite-dimensional simple graded algebras},
     journal = {Sbornik. Mathematics},
     pages = {965--983},
     publisher = {mathdoc},
     volume = {199},
     number = {7},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/}
}
TY  - JOUR
AU  - Yu. A. Bahturin
AU  - M. V. Zaicev
AU  - S. K. Sehgal
TI  - Finite-dimensional simple graded algebras
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 965
EP  - 983
VL  - 199
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/
LA  - en
ID  - SM_2008_199_7_a1
ER  - 
%0 Journal Article
%A Yu. A. Bahturin
%A M. V. Zaicev
%A S. K. Sehgal
%T Finite-dimensional simple graded algebras
%J Sbornik. Mathematics
%D 2008
%P 965-983
%V 199
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/
%G en
%F SM_2008_199_7_a1
Yu. A. Bahturin; M. V. Zaicev; S. K. Sehgal. Finite-dimensional simple graded algebras. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 965-983. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a1/