Independent functions in rearrangement invariant
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 945-963

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a separable or maximal rearrangement invariant space on $[0,1]$. It is shown that the inequality \begin{equation*} \biggl\|\,\sum_{k=1}^\infty f_k\biggr\|_{X} \le C\biggl\|\biggl(\,\sum_{k=1}^\infty f_k^2\biggl)^{1/2}\biggr\|_X \end{equation*} holds for an arbitrary sequence of independent functions $\{f_k\}_{k=1}^\infty\subset X$, $\displaystyle\int_0^1f_k(t)\,dt=0$, $k=1,2,\dots$, if and only if $X$ has the Kruglov property. As a consequence, it is proved that the same property is necessary and sufficient for a version of Maurey's well-known inequality for vector-valued Rademacher series with independent coefficients to hold in $X$. Bibliography: 24 titles.
@article{SM_2008_199_7_a0,
     author = {S. V. Astashkin},
     title = {Independent functions in rearrangement invariant},
     journal = {Sbornik. Mathematics},
     pages = {945--963},
     publisher = {mathdoc},
     volume = {199},
     number = {7},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Independent functions in rearrangement invariant
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 945
EP  - 963
VL  - 199
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/
LA  - en
ID  - SM_2008_199_7_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Independent functions in rearrangement invariant
%J Sbornik. Mathematics
%D 2008
%P 945-963
%V 199
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/
%G en
%F SM_2008_199_7_a0
S. V. Astashkin. Independent functions in rearrangement invariant. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 945-963. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/