Independent functions in rearrangement invariant
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 945-963 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a separable or maximal rearrangement invariant space on $[0,1]$. It is shown that the inequality \begin{equation*} \biggl\|\,\sum_{k=1}^\infty f_k\biggr\|_{X} \le C\biggl\|\biggl(\,\sum_{k=1}^\infty f_k^2\biggl)^{1/2}\biggr\|_X \end{equation*} holds for an arbitrary sequence of independent functions $\{f_k\}_{k=1}^\infty\subset X$, $\displaystyle\int_0^1f_k(t)\,dt=0$, $k=1,2,\dots$, if and only if $X$ has the Kruglov property. As a consequence, it is proved that the same property is necessary and sufficient for a version of Maurey's well-known inequality for vector-valued Rademacher series with independent coefficients to hold in $X$. Bibliography: 24 titles.
@article{SM_2008_199_7_a0,
     author = {S. V. Astashkin},
     title = {Independent functions in rearrangement invariant},
     journal = {Sbornik. Mathematics},
     pages = {945--963},
     year = {2008},
     volume = {199},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Independent functions in rearrangement invariant
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 945
EP  - 963
VL  - 199
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/
LA  - en
ID  - SM_2008_199_7_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Independent functions in rearrangement invariant
%J Sbornik. Mathematics
%D 2008
%P 945-963
%V 199
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/
%G en
%F SM_2008_199_7_a0
S. V. Astashkin. Independent functions in rearrangement invariant. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 945-963. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/

[1] A. Khintchine, “Über dyadische Brüche”, Math. Z., 18:1 (1923), 109–116 | DOI | MR | Zbl

[2] V. F. Gaposhkin, “Lacunary series and independent functions”, Russian Math. Surveys, 21:6 (1966), 1–82 | DOI | MR | Zbl

[3] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[4] G. Peshkir, A. N. Shiryaev, “The Khintchine inequalities and martingale expanding sphere of their action”, Russian Math. Surveys, 50:5 (1995), 849–904 | DOI | MR | Zbl

[5] V. A. Rodin, E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl

[6] W. B. Johnson, G. Schechtman, “Martingale inequalities in rearrangement invariant function spaces”, Israel J. Math., 64:3 (1988), 267–275 | DOI | MR | Zbl

[7] M. Sh. Braverman, Independent random variables and rearrangement invariant spaces, London Math. Soc. Lecture Note Ser., 194, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[8] V. M. Kruglov, “A note on infinitely divisible distributions”, Theory Probab. Appl., 15:2 (1970), 319–324 | DOI | MR | Zbl | Zbl

[9] H. P. Rosenthal, “On the subspaces of $L^p$ ($p>2$) spanned by sequences of independent random variables”, Israel J. Math., 8:3 (1970), 273–303 | DOI | MR | Zbl

[10] N. L. Carothers, S. J. Dilworth, “Inequalities for sums of independent random variables”, Proc. Amer. Math. Soc., 104:1 (1988), 221–226 | DOI | MR | Zbl

[11] W. B. Johnson, G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–808 | DOI | MR | Zbl

[12] S. V. Astashkin, F. A. Sukochev, “Series of independent random variables in rearrangement invariant spaces: an operator approach”, Israel J. Math., 145:1 (2005), 125–156 | DOI | MR | Zbl

[13] S. V. Astashkin, F. A. Sukochev, “Comparison of sums of independent and disjoint functions in symmetric spaces”, Math. Notes, 76:3–4 (2004), 449–454 | DOI | MR | Zbl

[14] S. G. Krejn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982 | MR | MR | Zbl | Zbl

[15] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II. Function spaces, Ergeb. Math. Grenzgeb., 97, Berlin–Heidelberg–New York, 1979 | MR | Zbl

[16] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Boston, MA, 1988 | MR | Zbl

[17] A. A. Borovkov, Probability theory, Gordon and Breach, Amsterdam–Abingdon, 1998 | MR | MR | Zbl | Zbl

[18] V. I. Dmitriev, S. G. Krein, V. I. Ovchinnikov, “Osnovy teorii interpolyatsii lineinykh operatorov”, Geometriya lineinykh prostranstv i teoriya operatorov, Izd-vo Yarosl. un-ta, Yaroslavl, 1977, 31–74 | MR | Zbl

[19] S. V. Astashkin, F. A. Sukochev, “Sums of independent functions in symmetric spaces with the Kruglov property”, Math. Notes, 80:3–4 (2006), 593–598 | DOI | MR | Zbl

[20] S. Montgomery-Smith, “Rearrangement invariant norms of symmetric sequence norms of independent sequences of random variables”, Israel J. Math., 131:1 (2002), 51–60 | DOI | MR | Zbl

[21] P. Hitczenko, S. Montgomery-Smith, “Measuring the magnitude of sums of independent random variables”, Ann. Probab., 29:1 (2001), 447–466 | DOI | MR | Zbl

[22] S. V. Astashkin, “About interpolation of subspaces of rearrangement invariant spaces generated by Rademacher system”, Int. J. Math. Math. Sci., 25:7 (2001), 451–465 | DOI | MR | Zbl

[23] S. J. Szarek, “On the best constants in the Khinchin inequality”, Studia Math., 58:2 (1976), 197–208 | MR | Zbl

[24] S. V. Astashkin, M. Sh. Braverman, “Podprostranstvo simmetrichnogo prostranstva, porozhdennoe sistemoi Rademakhera s vektornymi koeffitsientami”, Operatornye uravneniya v funktsionalnykh prostranstvakh, Izd-vo VGU, Voronezh, 1986, 3–10 | MR | Zbl