Independent functions in rearrangement invariant
Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 945-963
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a separable or maximal rearrangement invariant space on $[0,1]$. It is shown that the inequality
\begin{equation*}
\biggl\|\,\sum_{k=1}^\infty f_k\biggr\|_{X}
\le C\biggl\|\biggl(\,\sum_{k=1}^\infty f_k^2\biggl)^{1/2}\biggr\|_X
\end{equation*}
holds for an arbitrary sequence of independent functions
$\{f_k\}_{k=1}^\infty\subset X$, $\displaystyle\int_0^1f_k(t)\,dt=0$,
$k=1,2,\dots$, if and only if $X$ has the Kruglov property.
As a consequence, it is proved that the same property is necessary and sufficient for
a version of Maurey's well-known inequality for vector-valued Rademacher series with independent
coefficients to hold in $X$.
Bibliography: 24 titles.
@article{SM_2008_199_7_a0,
author = {S. V. Astashkin},
title = {Independent functions in rearrangement invariant},
journal = {Sbornik. Mathematics},
pages = {945--963},
publisher = {mathdoc},
volume = {199},
number = {7},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/}
}
S. V. Astashkin. Independent functions in rearrangement invariant. Sbornik. Mathematics, Tome 199 (2008) no. 7, pp. 945-963. http://geodesic.mathdoc.fr/item/SM_2008_199_7_a0/