Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form
Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 923-944 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak L$ be a linear uniformly elliptic operator of the second order in $\mathbb R^n$, $n\geqslant2$, with bounded measurable real coefficients, that satisfies the weak uniqueness property. The removability of compact subsets of a domain $D\subset\mathbb R^n$ is studied for weak solutions of the equation $\mathfrak Lf=0$ (in the sense of Krylov and Safonov) in some classes of continuous functions in $D$. In particular, a metric criterion for removability in Hölder classes with small exponent of smoothness is obtained. Bibliography: 20 titles.
@article{SM_2008_199_6_a5,
     author = {A. V. Pokrovskii},
     title = {Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form},
     journal = {Sbornik. Mathematics},
     pages = {923--944},
     year = {2008},
     volume = {199},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 923
EP  - 944
VL  - 199
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/
LA  - en
ID  - SM_2008_199_6_a5
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form
%J Sbornik. Mathematics
%D 2008
%P 923-944
%V 199
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/
%G en
%F SM_2008_199_6_a5
A. V. Pokrovskii. Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 923-944. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/

[1] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43–77 | MR | Zbl

[2] D. Gilbarg, J. Serrin, “On isolated singularities of solutions of second order elliptic differential equations”, J. Analyse Math., 4:1 (1954), 309–340 | DOI | MR | Zbl

[3] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, NJ–Toronto, ON–London, 1967 | MR | MR | Zbl | Zbl

[4] A. V. Pokrovskii, “Ustranimye osobennosti reshenii lineinykh ravnomerno ellipticheskikh uravnenii vtorogo poryadka”, Funkts. analiz i ego pril., 42:2 (2008), 44–55

[5] P. Bauman, “Positive solutions of elliptic equations in nondivergence form and their adjoints”, Ark. Mat., 22:1 (1984), 153–173 | DOI | MR | Zbl

[6] P. Bauman, “A Wiener test for nondivergence structure, second-order elliptic equations”, Indiana Univ. Math. J., 34:4 (1985), 825–844 | DOI | MR | Zbl

[7] M. V. Safonov, “Nonuniqueness for second-order elliptic equations with measurable coefficients”, SIAM J. Math. Anal., 30:4 (1999), 879–895 | DOI | MR | Zbl

[8] N. V. Krylov, M. V. Safonov, “A certain property of solutions of parabolic equations with measurable coefficients”, Math. USSR-Izv., 16:1 (1981), 151–164 | DOI | MR | Zbl | Zbl

[9] M. V. Safonov, “Harnack's inequality for elliptic equations and the Hölder property of their solutions”, J. Soviet Math., 21:5 (1983), 851–863 | DOI | MR | Zbl | Zbl

[10] C. E. Kenig, “Potential theory of non-divergence form elliptic equations”, Dirichlet forms (Varenna, Italy, 1992), Lecture Notes in Math., 1563, Springer-Verlag, Berlin, 1993, 89–128 | DOI | MR | Zbl

[11] V. A. Kondrat'ev, E. M. Landis, “Qualitative theory of second order linear partial differential equations”, Partial differential equations. III, Encyclopaedia Math. Sci., 32, Springer-Verlag, Berlin, 1991, 87–192 | MR | Zbl | Zbl

[12] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[13] N. V. Krylov, “On one-point weak uniqueness for elliptic equations”, Comm. Partial Differential Equations, 17:11–12 (1992), 1759–1784 | MR | Zbl

[14] N. Nadirashvili, “Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:3 (1997), 537–550 | MR | Zbl

[15] M. V. Safonov, “On a weak uniqueness for some elliptic equations”, Comm. Partial Differential Equations, 19:5–6 (1994), 943–957 | DOI | MR | Zbl

[16] L. Escauriaza, “Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form”, Comm. Partial Differential Equations, 25:5–6 (2000), 821–845 | DOI | MR | Zbl

[17] E. P. Dolzhenko, “O predstavlenii nepreryvnykh garmonicheskikh funktsii v vide potentsialov”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1113–1130 | MR | Zbl

[18] E. P. Dolzhenko, “Ob osobykh tochkakh nepreryvnykh garmonicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1251–1270 | MR | Zbl

[19] J. Mateu, J. Orobitg, “Lipschitz approximation by harmonic functions and some applications to spectral synthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl

[20] D. C. Ullrich, “Removable sets for harmonic functions”, Michigan Math. J., 38:3 (1991), 467–473 | DOI | MR | Zbl

[21] A. V. Pokrovskii, “Function classes defined from local approximations by solutions to hypoelliptic equations”, Siberian Math. J., 47:2 (2006), 324–340 | DOI | MR | Zbl

[22] I. Privaloff, “Sur les functions harmoniques”, Matem. sb., 32 (1925), 464–471 | Zbl

[23] I. I. Privalov, Subgarmonicheskie funktsii, ONTI, M., 1937

[24] M. D. Ivanovich, “O kharaktere nepreryvnosti reshenii lineinykh ellipticheskikh uravnenii vtorogo poryadka”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 21:3 (1966), 37–47 | MR | Zbl

[25] W. K. Hayman, P. B. Kennedy, Subharmonic functions, vol. 1, London Math. Soc. Monogr. Ser., 9, Academic Press, London–New York–San Francisco, 1976 | MR | MR | Zbl | Zbl

[26] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud., 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl

[27] A. A. Novruzov, I. T. Mamedov, “Removable singularities of solutions of linear elliptic equations with continuous coefficients”, Differential Equations, 17:11 (1982), 1316–1321 | MR | Zbl | Zbl