Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 923-944
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathfrak L$ be a linear uniformly elliptic operator of the second order in $\mathbb R^n$, $n\geqslant2$, with bounded measurable real coefficients, that satisfies the weak uniqueness property. The removability of compact subsets of a domain $D\subset\mathbb R^n$ is studied for weak solutions of the equation $\mathfrak Lf=0$ (in the sense of Krylov and Safonov) in some classes of continuous functions in $D$. In particular, a metric criterion for removability in Hölder classes with small exponent of smoothness is obtained. 
Bibliography: 20 titles.
			
            
            
            
          
        
      @article{SM_2008_199_6_a5,
     author = {A. V. Pokrovskii},
     title = {Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form},
     journal = {Sbornik. Mathematics},
     pages = {923--944},
     publisher = {mathdoc},
     volume = {199},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/}
}
                      
                      
                    TY - JOUR AU - A. V. Pokrovskii TI - Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form JO - Sbornik. Mathematics PY - 2008 SP - 923 EP - 944 VL - 199 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/ LA - en ID - SM_2008_199_6_a5 ER -
A. V. Pokrovskii. Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 923-944. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/
