Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form
Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 923-944

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak L$ be a linear uniformly elliptic operator of the second order in $\mathbb R^n$, $n\geqslant2$, with bounded measurable real coefficients, that satisfies the weak uniqueness property. The removability of compact subsets of a domain $D\subset\mathbb R^n$ is studied for weak solutions of the equation $\mathfrak Lf=0$ (in the sense of Krylov and Safonov) in some classes of continuous functions in $D$. In particular, a metric criterion for removability in Hölder classes with small exponent of smoothness is obtained. Bibliography: 20 titles.
@article{SM_2008_199_6_a5,
     author = {A. V. Pokrovskii},
     title = {Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form},
     journal = {Sbornik. Mathematics},
     pages = {923--944},
     publisher = {mathdoc},
     volume = {199},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 923
EP  - 944
VL  - 199
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/
LA  - en
ID  - SM_2008_199_6_a5
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form
%J Sbornik. Mathematics
%D 2008
%P 923-944
%V 199
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/
%G en
%F SM_2008_199_6_a5
A. V. Pokrovskii. Removable singularities for solutions of second-order linear uniformly elliptic equations in non-divergence form. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 923-944. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a5/