Zeros of the Green's function for the de la Vall\'ee-Poussin problem
Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 891-921
Voir la notice de l'article provenant de la source Math-Net.Ru
The Green's function for the de la Vallée-Poussin problem
\begin{gather*}
Lx\equiv x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)x=f,
\\
x(a_i)=A_i^{(0)}, \ \ x'(a_i)=A_i^{(1)}, \ \ \dots, \ \ x^{(\nu_i-1)}(a_i)=A_i^{(\nu_i-1)},
\ \ i= {1,\dots,m},
\end{gather*}
where $a=a_1$, $m\geqslant2$,
$\sum\nu_i=n$, $p_i(\,\cdot\,)$ and $f(\,\cdot\,)\in L_1[a,b]$, is investigated.
It is defined in the square $a\leqslant t,s\leqslant b$, and vanishes at the lines
$t=a_i$, $i={1,\dots,m}$, $s=a$, $s=b$;
it is proved that the orders of its zeros have uniform bounds.
Bibliography: 27 titles.
@article{SM_2008_199_6_a4,
author = {Yu. V. Pokornyi},
title = {Zeros of the {Green's} function for the de la {Vall\'ee-Poussin} problem},
journal = {Sbornik. Mathematics},
pages = {891--921},
publisher = {mathdoc},
volume = {199},
number = {6},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a4/}
}
Yu. V. Pokornyi. Zeros of the Green's function for the de la Vall\'ee-Poussin problem. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 891-921. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a4/