@article{SM_2008_199_6_a2,
author = {V. K. Zakharov and T. V. Rodionov},
title = {Classification of {Borel} sets and functions for an arbitrary space},
journal = {Sbornik. Mathematics},
pages = {833--869},
year = {2008},
volume = {199},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a2/}
}
V. K. Zakharov; T. V. Rodionov. Classification of Borel sets and functions for an arbitrary space. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 833-869. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a2/
[1] H. Lebesgue, “Sur les fonctions représentables analytiquement”, Journ. de Math. (6), 1 (1905), 139–216 | Zbl
[2] F. Hausdorff, Grundzüge der Mengenlehre, Veit, Leipzig, 1914 | MR | Zbl
[3] F. Hausdorff, Set theory, Chelsea, New York, 1991 | MR | Zbl
[4] K. Kuratowski, Topology, vol. 1, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl
[5] W. H. Young, “On functions and their associated sets of points”, Proc. London Math. Soc. (2), 12:1 (1913), 260–287 | DOI | Zbl
[6] H. R. Shatery, J. Zafarani, “The equality between Borel and Baire classes”, Real Anal. Exchange, 30:1 (2004), 373–384 | MR | Zbl
[7] S. Banach, “Über analytisch darstellbare Operationen in abstrakten Räumen”, Fund. Math., 17 (1931), 283–295 | Zbl
[8] V. K. Zakharov, “Borel cover and Borel extension”, Studia Sci. Math. Hungar., 24:4 (1989), 407–428 | MR | Zbl
[9] V. K. Zakharov, “Classification of Borel sets and functions for an arbitrary space”, Russian Acad. Sci. Dokl. Math., 66:1 (2002), 99–101 | MR | Zbl
[10] V. K. Zakharov, “Classification of Borel sets and functions in the general case”, Russian Math. Surveys, 57:4 (2002), 822–823 | DOI | MR | Zbl
[11] Th. Jech, Set theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003 | MR | Zbl
[12] V. K. Zakharov, “Connections between the Lebesgue extension and the Borel extension of the first class, and between the preimages corresponding to them”, Math. USSR-Izv., 37:2 (1991), 273–302 | DOI | MR | Zbl
[13] A. D. Alexandroff, “Additive set-functions in abstract spaces”, Matem. sb., 8(50):2 (1940), 307–348 ; 9(51):3 (1941), 563–628 ; 13(55):2–3 (1943), 169–238 | MR | Zbl | MR | Zbl | MR | Zbl
[14] V. K. Zakharov, A. V. Koldunov, “The characterization of the $\sigma$-covering of a compact space”, Siberian Math. J., 23:6 (1982), 834–841 | DOI | MR | Zbl
[15] V. K. Zaharov, A. V. Koldunov, “Characterization of the $\sigma$-cover of a compact”, Math. Nachr., 107:1 (1982), 7–16 | DOI | MR | Zbl
[16] S. M. Srivastava, A course on Borel sets, Grad. Texts in Math., 180, Springer-Verlag, New York, 1998 | MR | Zbl
[17] M. I. Dyachenko, P. L. Ulyanov, Mera i integral, Faktorial, M., 1998