Classification of Borel sets and functions for an arbitrary space
Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 833-869

Voir la notice de l'article provenant de la source Math-Net.Ru

For Borel functions on a perfect normal space and a perfect topological space there are two Baire convergence classifications: one due to Lebesgue and Hausdorff and the other due to Banach. However, neither classification is valid for an arbitrary topological space. In this paper the Baire convergence classification of Borel functions on an arbitrary space is given. This classification of Borel functions uses two classifications of Borel sets: one generalises the Young-Hausdorff classification for a perfect space and the other is new. Bibliography: 17 titles.
@article{SM_2008_199_6_a2,
     author = {V. K. Zakharov and T. V. Rodionov},
     title = {Classification of {Borel} sets and functions for an arbitrary space},
     journal = {Sbornik. Mathematics},
     pages = {833--869},
     publisher = {mathdoc},
     volume = {199},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a2/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - T. V. Rodionov
TI  - Classification of Borel sets and functions for an arbitrary space
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 833
EP  - 869
VL  - 199
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_6_a2/
LA  - en
ID  - SM_2008_199_6_a2
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A T. V. Rodionov
%T Classification of Borel sets and functions for an arbitrary space
%J Sbornik. Mathematics
%D 2008
%P 833-869
%V 199
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_6_a2/
%G en
%F SM_2008_199_6_a2
V. K. Zakharov; T. V. Rodionov. Classification of Borel sets and functions for an arbitrary space. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 833-869. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a2/