@article{SM_2008_199_6_a1,
author = {A. F. Grishin and A. Chouigui},
title = {Various types of convergence of sequences of $\delta$-subharmonic functions},
journal = {Sbornik. Mathematics},
pages = {811--832},
year = {2008},
volume = {199},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/}
}
A. F. Grishin; A. Chouigui. Various types of convergence of sequences of $\delta$-subharmonic functions. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 811-832. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/
[1] V. S. Azarin, “On the asymptotic behavior of subharmonic functions of finite order”, Math. USSR-Sb., 36:2 (1980), 135–154 | DOI | MR | Zbl | Zbl
[2] L. Hörmander, The analysis of linear partial differential operators. II: Differential operators with constant coefficients, Grundlehren Math. Wiss., 257, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | MR | Zbl | Zbl
[3] M. A. Fedorov, A. F. Grishin, “Some questions of the Nevanlinna theory for the complex half-plane”, Math. Phys. Anal. Geom., 1:3 (1998), 223–271 | MR | Zbl
[4] A. Huber, “On subharmonic functions and differential geometry in the large”, Comment. Math. Helv., 32:1 (1958), 13–72 | DOI | MR | Zbl
[5] Yu. G. Reshetnyak, “Two-dimensional manifolds of bounded curvature”, Geometry IV. Non-regular Riemannian geometry, Encyclopaedia Math. Sci., 70, Springer-Verlag, Berlin, 1993, 3–163 | MR | MR | Zbl
[6] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl
[7] N. Burbaki, Elementy matematiki. Integrirovanie, Nauka, M., 1977 ; N. Bourbaki, Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4, Hermann, Paris, 1965 ; Éléments de mathématique. Fasc. XXI. Livre VI: Intégration. Chapitre 5, Hermann, Paris, 1967 ; Éléments de mathématique. Fasc. XXXV. Livre VI: Intégration. Chapitre 9, Hermann, Paris, 1969 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl
[8] L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[9] J.-I. Itô, “Subharmonic functions in the half-plane”, Trans. Amer. Math. Soc., 129:3 (1967), 479–499 | DOI | MR | Zbl
[10] A. F. Grishin, “Nepreryvnost i asimptoticheskaya nepreryvnost subgarmonicheskikh funktsii. I”, Matem. fizika, analiz, geom., 1:2 (1994), 193–215 | MR | Zbl
[11] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl