Various types of convergence of sequences of $\delta$-subharmonic functions
Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 811-832 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $v_n(z)$ be a sequence of $\delta$-subharmonic functions in some domain $G$. Conditions are studied under which the convergence of $v_n(z)$ as a sequence of generalized functions implies its convergence in the Lebesgue spaces $L_p(\gamma)$. Hörmander studied the case where $v_n(z)$ is a sequence of subharmonic functions and the measure $\gamma$ is the restriction of the Lebesgue measure to a compactum contained in $G$. In this paper a more general case is considered and theorems of two types are obtained. In theorems of the first type it is assumed that $\operatorname{supp}\gamma\Subset G$. In theorems of the second type it is assumed that the support of the measure is a compactum and $\operatorname{supp}\gamma\subset\overline G$. In the second case, $G$ is assumed to be the half-plane. Bibliography: 11 titles.
@article{SM_2008_199_6_a1,
     author = {A. F. Grishin and A. Chouigui},
     title = {Various types of convergence of sequences of $\delta$-subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {811--832},
     year = {2008},
     volume = {199},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/}
}
TY  - JOUR
AU  - A. F. Grishin
AU  - A. Chouigui
TI  - Various types of convergence of sequences of $\delta$-subharmonic functions
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 811
EP  - 832
VL  - 199
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/
LA  - en
ID  - SM_2008_199_6_a1
ER  - 
%0 Journal Article
%A A. F. Grishin
%A A. Chouigui
%T Various types of convergence of sequences of $\delta$-subharmonic functions
%J Sbornik. Mathematics
%D 2008
%P 811-832
%V 199
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/
%G en
%F SM_2008_199_6_a1
A. F. Grishin; A. Chouigui. Various types of convergence of sequences of $\delta$-subharmonic functions. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 811-832. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/

[1] V. S. Azarin, “On the asymptotic behavior of subharmonic functions of finite order”, Math. USSR-Sb., 36:2 (1980), 135–154 | DOI | MR | Zbl | Zbl

[2] L. Hörmander, The analysis of linear partial differential operators. II: Differential operators with constant coefficients, Grundlehren Math. Wiss., 257, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | MR | Zbl | Zbl

[3] M. A. Fedorov, A. F. Grishin, “Some questions of the Nevanlinna theory for the complex half-plane”, Math. Phys. Anal. Geom., 1:3 (1998), 223–271 | MR | Zbl

[4] A. Huber, “On subharmonic functions and differential geometry in the large”, Comment. Math. Helv., 32:1 (1958), 13–72 | DOI | MR | Zbl

[5] Yu. G. Reshetnyak, “Two-dimensional manifolds of bounded curvature”, Geometry IV. Non-regular Riemannian geometry, Encyclopaedia Math. Sci., 70, Springer-Verlag, Berlin, 1993, 3–163 | MR | MR | Zbl

[6] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[7] N. Burbaki, Elementy matematiki. Integrirovanie, Nauka, M., 1977 ; N. Bourbaki, Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4, Hermann, Paris, 1965 ; Éléments de mathématique. Fasc. XXI. Livre VI: Intégration. Chapitre 5, Hermann, Paris, 1967 ; Éléments de mathématique. Fasc. XXXV. Livre VI: Intégration. Chapitre 9, Hermann, Paris, 1969 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[8] L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[9] J.-I. Itô, “Subharmonic functions in the half-plane”, Trans. Amer. Math. Soc., 129:3 (1967), 479–499 | DOI | MR | Zbl

[10] A. F. Grishin, “Nepreryvnost i asimptoticheskaya nepreryvnost subgarmonicheskikh funktsii. I”, Matem. fizika, analiz, geom., 1:2 (1994), 193–215 | MR | Zbl

[11] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl