Various types of convergence of sequences of $\delta$-subharmonic functions
Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 811-832

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $v_n(z)$ be a sequence of $\delta$-subharmonic functions in some domain $G$. Conditions are studied under which the convergence of $v_n(z)$ as a sequence of generalized functions implies its convergence in the Lebesgue spaces $L_p(\gamma)$. Hörmander studied the case where $v_n(z)$ is a sequence of subharmonic functions and the measure $\gamma$ is the restriction of the Lebesgue measure to a compactum contained in $G$. In this paper a more general case is considered and theorems of two types are obtained. In theorems of the first type it is assumed that $\operatorname{supp}\gamma\Subset G$. In theorems of the second type it is assumed that the support of the measure is a compactum and $\operatorname{supp}\gamma\subset\overline G$. In the second case, $G$ is assumed to be the half-plane. Bibliography: 11 titles.
@article{SM_2008_199_6_a1,
     author = {A. F. Grishin and A. Chouigui},
     title = {Various types of convergence of sequences of $\delta$-subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {811--832},
     publisher = {mathdoc},
     volume = {199},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/}
}
TY  - JOUR
AU  - A. F. Grishin
AU  - A. Chouigui
TI  - Various types of convergence of sequences of $\delta$-subharmonic functions
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 811
EP  - 832
VL  - 199
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/
LA  - en
ID  - SM_2008_199_6_a1
ER  - 
%0 Journal Article
%A A. F. Grishin
%A A. Chouigui
%T Various types of convergence of sequences of $\delta$-subharmonic functions
%J Sbornik. Mathematics
%D 2008
%P 811-832
%V 199
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/
%G en
%F SM_2008_199_6_a1
A. F. Grishin; A. Chouigui. Various types of convergence of sequences of $\delta$-subharmonic functions. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 811-832. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a1/