@article{SM_2008_199_6_a0,
author = {A. Bak and Yu. V. Muranov},
title = {Splitting a~simple homotopy equivalence along a~submanifold with filtration},
journal = {Sbornik. Mathematics},
pages = {787--809},
year = {2008},
volume = {199},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_6_a0/}
}
A. Bak; Yu. V. Muranov. Splitting a simple homotopy equivalence along a submanifold with filtration. Sbornik. Mathematics, Tome 199 (2008) no. 6, pp. 787-809. http://geodesic.mathdoc.fr/item/SM_2008_199_6_a0/
[1] S. P. Novikov, “Algebraic construction and properties of Hermitian analogs of $K$-theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I, II”, Math. USSR-Izv., 4:2 (1970), 257–292 | DOI | MR | Zbl | Zbl | Zbl
[2] C. T. C. Wall, Surgery on compact manifolds, London Math. Soc. Monogr. Ser., 1, Academic Press, London–New York, 1970 | MR | Zbl
[3] W. Browder, Surgery on simply-connected manifolds, Ergeb. Math. Grenzgeb., 65, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl
[4] A. Ranicki, “The total surgery obstruction”, Algebraic Topology, Aarhus 1978 (Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., 763, Springer-Verlag, Berlin–Heidelberg, 1979, 275–316 | DOI | MR | Zbl
[5] A. Ranicki, Exact sequences in the algebraic theory of surgery, Math. Notes, 26, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1981 | MR | Zbl
[6] W. Browder, F. Quinn, “A surgery theory for $G$-manifolds and stratified sets”, Manifolds – Tokyo 1973, Proc. Internat. Conf. Manifolds (Tokyo, 1973), Univ. Tokyo Press, Tokyo, 1975, 27–36 | MR | Zbl
[7] Sh. Weinberger, The topological classification of stratified spaces, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1994 | MR | Zbl
[8] Yu. V. Muranov, D. Repovs, R. Jimenez, “A spectral sequence in surgery theory and manifolds with filtrations”, Trans. Moscow Math. Soc., 2006, 261–288 | DOI | MR | Zbl
[9] Yu. V. Muranov, D. Repovs, F. Spaggiari, “Surgery on triples of manifolds”, Sb. Math., 194:8 (2003), 1251–1271 | DOI | MR | Zbl
[10] A. Bak, Yu. V. Muranov, “Normal invariants of manifold pairs and assembly maps”, Sb. Math., 197:6 (2006), 791–811 | DOI
[11] R. Jimenez, Yu. V. Muranov, D. Repovš, “Splitting along a submanifold pair”, $K$-Theory (to appear)
[12] W. Browder, G. R. Livesay, “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc., 73 (1967), 242–245 | DOI | MR | Zbl
[13] S. López de Medrano, Involutions on manifolds, Ergeb. Math. Grenzgeb., 59, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl
[14] S. E. Cappell, J. L. Shaneson, “Pseudo-free actions. I”, Algebraic topology, Aarhus 1978 (Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., 763, Springer-Verlag, Berlin–Heidelberg, 1979, 395–447 | DOI | MR | Zbl
[15] I. Hambleton, “Projective surgery obstructions on closed manifolds”, Algebraic $K$-theory, Part II (Oberwolfach, 1980), Lecture Notes in Math., 967, Springer-Verlag, Berlin–New York, 1982, 101–131 | DOI | MR | Zbl
[16] A. F. Kharshiladze, “Smooth and piecewise-linear structures on products of projective spaces”, Math. USSR-Izv., 22:2 (1984), 339–355 | DOI | MR | Zbl | Zbl
[17] Yu.,V. Muranov, “The splitting problem”, Proc. Steklov Inst. Math., 212 (1996), 115–137 | MR | Zbl | Zbl
[18] A. F. Kharshiladze, “Surgery on manifolds with finite fundamental groups”, Russian Math. Surveys, 42:4 (1987), 65–103 | DOI | MR | Zbl
[19] I. Hambleton, R. J. Milgram, L. Taylor, B. Williams, “Surgery with finite fundamental group”, Proc. London Math. Soc. (3), 56:2 (1988), 349–379 | DOI | MR | Zbl
[20] H. K. Mukerjee, “Classification of homotopy Dold manifolds”, New York J. Math., 9 (2003), 271–293 | MR | Zbl
[21] H. K. Mukerjee, “Classification of homotopy real Milnor manifolds”, Topology Appl., 139:1–3 (2004), 151–184 | DOI | MR | Zbl
[22] A. Cavicchioli, Yu. V. Muranov, F. Spaggiari, “Mixed structures on a manifold with boundary”, Glasg. Math. J., 48:1 (2006), 125–143 | DOI | MR | Zbl
[23] Yu. V. Muranov, A. F. Kharshiladze, “Browder–Livesay groups of Abelian 2-groups”, Math. USSR-Sb., 70:2 (1991), 499–540 | DOI | MR | Zbl | Zbl
[24] I. Hambleton, L. Taylor, B. Williams, “An introduction to maps between surgery obstruction groups”, Algebraic topology, Aarhus 1982 (Aarhus, 1982), Lecture Notes in Math., 1051, 1984, 49–127 | DOI | MR | Zbl
[25] A. Ranicki, “The $L$-theory of twisted quadratic extensions”, Canad. J. Math., 39:2 (1987), 345–364 | MR | Zbl
[26] Yu. V. Muranov, R. Himenez, “Transfer maps for triples of manifolds”, Math. Notes, 79:3–4 (2006), 387–398 | DOI | MR | Zbl
[27] A. F. Kharshiladze, “Iterated Browder–Livesay invariants and the uzing problem”, Math. Notes, 41:4 (1987), 312–315 | DOI | MR | Zbl
[28] A. Cavicchioli, Yu. V. Muranov, F. Spaggiari, On the elements of the second type in surgery groups, Preprint No 111, Max-Planck-Institut für Mathematik, Bonn, 2006
[29] I. Hambleton, A. Ranicki, L. Taylor, “Round $L$-theory”, J. Pure Appl. Algebra, 47:2 (1987), 131–154 | DOI | MR | Zbl
[30] A. A. Ranicki, Algebraic $L$-theory and topological manifolds, Cambridge Tracts in Math., 102, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[31] A. Bak, Yu. V. Muranov, “Splitting along submanifolds and $L$-spectra”, J. Math. Sci. (N. Y.), 123:4 (2004), 4169–4184 | DOI | MR | Zbl
[32] I. Khèmblton, A. F. Kharshiladze, “A spectral sequence in surgery”, Russian Acad. Sci. Sb. Math., 77:1 (1994), 1–9 | DOI | MR | Zbl
[33] P. M. Akhmetiev, A. Cavicchioli, D. Repovš, “On realization of splitting obstructions in Browder–Livesay groups for closed manifold pairs”, Proc. Edinburgh Math. Soc. (2), 43:1 (2000), 15–25 | DOI | MR | Zbl
[34] Yu. V. Muranov, “Splitting obstruction groups and quadratic extensions of anti-structures”, Izv. Math., 59:6 (1995), 1207–1232 | DOI | MR | Zbl
[35] R. M. Switzer, Algebraic topology–homotopy and homology, Grundlehren Math. Wiss., 212, Springer-Verlag, Berlin–Heidelberg–New York, 1975 ; R. M. Svittser, Algebraicheskaya topologiya – gomotopii i gomologii, Nauka, M., 1985 | MR | Zbl | MR | Zbl
[36] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., 304, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | DOI | MR | Zbl