$G$-convergence and homogenization of generalized Beltrami operators
Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 755-786 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Questions relating to the $G$-convergence and the homogenization of generalized Beltrami operators are considered. The $G$-compactness is established, homogenized models are constructed, the geometry of a certain $G$-compact space is described. Bibliography: 14 titles.
@article{SM_2008_199_5_a5,
     author = {M. M. Sirazhudinov},
     title = {$G$-convergence and homogenization of generalized {Beltrami} operators},
     journal = {Sbornik. Mathematics},
     pages = {755--786},
     year = {2008},
     volume = {199},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_5_a5/}
}
TY  - JOUR
AU  - M. M. Sirazhudinov
TI  - $G$-convergence and homogenization of generalized Beltrami operators
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 755
EP  - 786
VL  - 199
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_5_a5/
LA  - en
ID  - SM_2008_199_5_a5
ER  - 
%0 Journal Article
%A M. M. Sirazhudinov
%T $G$-convergence and homogenization of generalized Beltrami operators
%J Sbornik. Mathematics
%D 2008
%P 755-786
%V 199
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2008_199_5_a5/
%G en
%F SM_2008_199_5_a5
M. M. Sirazhudinov. $G$-convergence and homogenization of generalized Beltrami operators. Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 755-786. http://geodesic.mathdoc.fr/item/SM_2008_199_5_a5/

[1] V. V. Jikov, S. M. Kozlov, O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994 | MR | MR | Zbl | Zbl

[2] S. Spagnolo, “Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore”, Ann. Scuola Norm. Sup. Pisa (3), 21 (1967), 657–699 | MR | Zbl

[3] S. Spagnolo, “Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche”, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571–597 | MR | Zbl

[4] E. De Giorgi, S. Spagnolo, “Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine”, Boll. Un. Mat. Ital. (4), 8 (1973), 391–411 | MR | Zbl

[5] V. V. Žikov, M. M. Siražudinov, “On $G$-compactness of a class of nondivergence elliptic operators of second order”, Math. USSR-Izv., 19:1 (1982), 27–40 | DOI | MR | Zbl | Zbl

[6] V. V. Žikov, M. M. Siražudinov, “The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the Cauchy problem”, Math. USSR-Sb., 44:2 (1983), 149–166 | DOI | MR | Zbl | Zbl

[7] M. M. Sirazhudinov, “The $G$-convergence and averaging of some high-order nondivergence elliptic operators”, Differential Equations, 19:11 (1983), 1429–1435 | MR | Zbl

[8] M. M. Sirazhudinov, “$G$-compactness of a class of first-order elliptic systems”, Differential Equations, 26:2 (1990), 229–235 | MR | Zbl | Zbl

[9] T. Iwaniec, F. Giannetti, G. Moscariello, C. Sbordone, L. Kovalev, “On $G$-compactness of the Beltrami operators”, Nonlinear homogenization and its applications to composites, polycrystals and smart materials, NATO Sci. Ser. II Math. Phys. Chem., 170, Kluwer Acad. Publ., Dordrecht, 2004, 107–138 | MR

[10] I. N. Vekua, Generalized analytic functions, Pergamon, London–Paris–Frankfurt; Addison-Wesley, Reading, MA, 1962 | MR | MR | Zbl | Zbl

[11] B. V. Boyapskii, “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43(85):4 (1957), 451–503 | MR | Zbl

[12] V. V. Zhikov, M. M. Sirazhudinov, “The averaging of a system of Beltrami equations”, Differential Equations, 24:1 (1988), 50–56 | MR | Zbl

[13] M. M. Sirazhudinov, Kraevye zadachi dlya ellipticheskikh sistem na ploskosti, Dis. ... dokt. fiz.-matem. nauk, Izd-vo Mosk. un-ta, M., 2002

[14] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl