Radical of a~relatively free associative algebra over fields of positive characteristic
Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 707-753

Voir la notice de l'article provenant de la source Math-Net.Ru

The following Kemer problem on the nilindex of the radical is solved: it is shown that the Jacobson radical of a relatively free associative algebra over an infinite field of positive characteristic is a nilideal of bounded index. A basis of the identities with forms for matrix algebras over infinite fields of positive characteristic is described. Bibliography: 10 titles.
@article{SM_2008_199_5_a4,
     author = {L. M. Samoilov},
     title = {Radical of a~relatively free associative algebra over fields of positive characteristic},
     journal = {Sbornik. Mathematics},
     pages = {707--753},
     publisher = {mathdoc},
     volume = {199},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_5_a4/}
}
TY  - JOUR
AU  - L. M. Samoilov
TI  - Radical of a~relatively free associative algebra over fields of positive characteristic
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 707
EP  - 753
VL  - 199
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_5_a4/
LA  - en
ID  - SM_2008_199_5_a4
ER  - 
%0 Journal Article
%A L. M. Samoilov
%T Radical of a~relatively free associative algebra over fields of positive characteristic
%J Sbornik. Mathematics
%D 2008
%P 707-753
%V 199
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_5_a4/
%G en
%F SM_2008_199_5_a4
L. M. Samoilov. Radical of a~relatively free associative algebra over fields of positive characteristic. Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 707-753. http://geodesic.mathdoc.fr/item/SM_2008_199_5_a4/