Radical of a~relatively free associative algebra over fields of positive characteristic
Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 707-753
Voir la notice de l'article provenant de la source Math-Net.Ru
The following Kemer problem on the nilindex of the radical is solved: it is shown that the Jacobson radical of a relatively free associative algebra over an infinite field of positive characteristic is a nilideal of bounded index. A basis of the identities with forms for matrix algebras over infinite fields of positive characteristic is described.
Bibliography: 10 titles.
@article{SM_2008_199_5_a4,
author = {L. M. Samoilov},
title = {Radical of a~relatively free associative algebra over fields of positive characteristic},
journal = {Sbornik. Mathematics},
pages = {707--753},
publisher = {mathdoc},
volume = {199},
number = {5},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_5_a4/}
}
L. M. Samoilov. Radical of a~relatively free associative algebra over fields of positive characteristic. Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 707-753. http://geodesic.mathdoc.fr/item/SM_2008_199_5_a4/