Weak homological dimensions and biflat Köthe algebras
Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 673-705 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The homological properties of metrizable Köthe algebras $\lambda(P)$ are studied. A criterion for an algebra $A=\lambda(P)$ to be biflat in terms of the Köthe set $P$ is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator $A\mathbin{\widehat\otimes}A\to A$. The weak homological dimensions (the weak global dimension $\operatorname{w{.}dg}$ and the weak bidimension $\operatorname{w{.}db}$) of biflat Köthe algebras are calculated. Namely, it is shown that the conditions $\operatorname{w{.}db}\lambda(P)\le1$ and $\operatorname{w{.}dg}\lambda(P)\le1$ are equivalent to the nuclearity of $\lambda(P)$; and if $\lambda(P)$ is non-nuclear, then $\operatorname{w{.}dg}\lambda(P)=\operatorname{w{.}db}\lambda(P)=2$. It is established that the nuclearity of a biflat Köthe algebra $\lambda(P)$, under certain additional conditions on the Köthe set $P$, implies the stronger estimate $\operatorname{db}\lambda(P)\le1$, where $\operatorname{db}$ is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Köthe algebra $\lambda(P)$ such that $\operatorname{db}\lambda(P)=2$ (while $\operatorname{w{.}db}\lambda(P)=1$). Finally, it is shown that many biflat Köthe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.
@article{SM_2008_199_5_a3,
     author = {A. Yu. Pirkovskii},
     title = {Weak homological dimensions and biflat {K\"othe} algebras},
     journal = {Sbornik. Mathematics},
     pages = {673--705},
     year = {2008},
     volume = {199},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_5_a3/}
}
TY  - JOUR
AU  - A. Yu. Pirkovskii
TI  - Weak homological dimensions and biflat Köthe algebras
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 673
EP  - 705
VL  - 199
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_5_a3/
LA  - en
ID  - SM_2008_199_5_a3
ER  - 
%0 Journal Article
%A A. Yu. Pirkovskii
%T Weak homological dimensions and biflat Köthe algebras
%J Sbornik. Mathematics
%D 2008
%P 673-705
%V 199
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2008_199_5_a3/
%G en
%F SM_2008_199_5_a3
A. Yu. Pirkovskii. Weak homological dimensions and biflat Köthe algebras. Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 673-705. http://geodesic.mathdoc.fr/item/SM_2008_199_5_a3/

[1] D. Vogt, “Sequence space representations of spaces of test functions and distributions”, Functional analysis, holomorphy, and approximation theory (Rio de Janeiro, 1979), Lecture Notes in Pure and Appl. Math., 83, Dekker, New York, 1983, 405–443 | MR | Zbl

[2] P. Domański, D. Vogt, “A splitting theorem for the space of smooth functions”, J. Funct. Anal., 153:2 (1998), 203–248 | DOI | MR | Zbl

[3] P. Domański, D. Vogt, “Distributional complexes split for positive dimensions”, J. Reine Angew. Math., 522 (2000), 63–79 | DOI | MR | Zbl

[4] M. Langenbruch, “Complemented kernels of partial differential operators in weighted spaces of (generalized) functions”, Studia Math., 89:1 (1988), 37–63 | MR | Zbl

[5] M. Langenbruch, “Tame right inverses for partial differential equations”, Advances in the theory of Fréchet spaces (Istanbul, Turkey, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 287, Kluwer Acad. Publ., Dordrecht, 1989, 79–114 | MR | Zbl

[6] S. J. Bhatt, G. M. Deheri, “Köthe spaces and topological algebra with bases”, Proc. Indian Acad. Sci. Math. Sci., 100:3 (1990), 259–273 | MR | Zbl

[7] A. Yu. Pirkovskii, “Biprojective topological algebras of homological bidimension 1”, J. Math. Sci. (New York), 111:2 (2002), 3476–3495 | DOI | MR | Zbl

[8] A. Yu. Pirkovskii, “Homological bidimension of biprojective topological algebras and nuclearity”, Proceedings of the 3rd international conference on topological algebra and applications (University of Oulu, Finland, 2001), Acta Univ. Oulu Ser. A Sci. Rerum Natur., 408, Oulu Univ. Press, Oulu, 2004, 179–196 | MR | Zbl

[9] A. Ya. Khelemskij, “Flat Banach modules and amenable algebras”, Trans. Moscow Math. Soc., 1985, 199–244 | MR | MR | Zbl | Zbl

[10] A. J. Helemskiĭ, “On a method for calculating and estimating the global homological dimension of Banach algebras”, Math. USSR-Sb., 16:1 (1972), 125–138 | DOI | MR | Zbl | Zbl

[11] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972 | MR

[12] Yu. V. Selivanov, “Cohomology of biflat Banach algebras with coefficients in dual bimodules”, Funct. Anal. Appl., 29:4 (1995), 289–291 | DOI | MR | Zbl

[13] Yu. V. Selivanov, “Weak homological bidimension and its values in the class of biflat Banach algebras”, Extracta Math., 11:2 (1996), 348–365 | MR | Zbl

[14] A. Ya. Khelemskii, The hohomology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl

[15] Yu. V. Selivanov, “Biprojective Banach algebras, their structure, cohomologies, and connection with nuclear operators”, Funct. Anal. Appl., 10:1 (1976), 78–79 | DOI | MR | Zbl | Zbl

[16] Yu. V. Selivanov, “Coretraction problems and homological properties of Banach algebras”, Topological homology, Helemskii's Moscow seminar, Nova, Huntington, NY, 2000, 145–199 | MR | Zbl

[17] A. Ya. Khelemskii, M. V. Sheinberg, “Amenable Banach algebras”, Funct. Anal. Appl., 13:1 (1979), 32–37 | DOI | MR | Zbl | Zbl

[18] Yu. V. Selivanov, Kogomologii banakhovykh i blizkikh k nim algebr, Dis. ... dokt. fiz.-matem. nauk, M., 2002

[19] O. S. Ogneva, Gomologicheskie razmernosti nekotorykh algebr osnovnykh i obobschennykh funktsii na mnogoobraziyakh, Dis. ... kand. fiz.-matem. nauk, M., 1986

[20] A. Ya. Helemskii, “31 problems of the homology of the algebras of analysis”, Linear and complex analysis. Problem book 3. Part I, Lecture Notes in Math., 1573, Springer-Verlag, Berlin, 1994, 54–78 | DOI | MR | Zbl

[21] J. L. Taylor, “Homology and cohomology for topological algebras”, Advances in Math., 9:2 (1972), 137–182 | DOI | MR | Zbl

[22] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc., 11, 1952 | MR | Zbl

[23] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 ; A. Ya. Helemskii, Banach and locally convex algebras, Oxford Sci. Publ., Clarendon Press, Oxford Univ. Press, New York, 1993 | MR | Zbl | MR | Zbl

[24] A. Pietsch, Nukleare lokalkonvexe Räume, Akademie, Berlin, 1965 | MR | MR | Zbl | Zbl

[25] R. Meise, D. Vogt, Introduction to functional analysis, Oxf. Grad. Texts Math., 2, The Clarendon Press, Oxford Univ. Press, New York, 1997 | MR | Zbl

[26] K.-D. Bierstedt, R. G. Meise, W. H. Summers, “Köthe sets and Köthe sequence spaces”, Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980), North-Holland Math. Stud., 71, North-Holland, Amsterdam–New York, 1982, 27–91 | MR | Zbl

[27] A. Pietsch, “Zur Theorie der topologischen Tensorprodukte”, Math. Nachr., 25:1 (1963), 19–30 | DOI | MR | Zbl

[28] S. Rolewicz, “On spaces of holomorphic functions”, Studia Math., 21 (1962), 135–160 | MR | Zbl

[29] H. Render, A. Sauer, “Algebras of holomorphic functions with Hadamard multiplication”, Studia Math., 118:1 (1996), 77–100 | MR | Zbl

[30] A. Yu. Pirkovskii, “The problem of the existence of sufficiently many injective Frechet modules over non-normed Frechet algebras”, Izv. Math., 62:4 (1998), 773–788 | DOI | MR | Zbl

[31] A. Yu. Pirkovskii, “On Arens–Michael algebras which do not have non-zero injective $\widehat\otimes$-modules”, Studia Math., 133:2 (1999), 163–174 | MR | Zbl

[32] A. Yu. Pirkovskii, Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities, arXiv: math/0610528

[33] A. Yu. Pirkovskii, “On certain homological properties of Stein algebras”, J. Math. Sci. (New York), 95:6 (1999), 2690–2702 | DOI | MR | Zbl

[34] I. Bucur, A. Deleanu, Introduction to the theory of categories and functors, Wiley, London–New York–Sydney, 1968 | MR | MR | Zbl | Zbl

[35] H. H. Schaefer, Topological vector spaces, Macmillan, New York–London, 1966 | MR | MR | Zbl | Zbl

[36] A. Ya. Helemskii, “Homology for the algebras of analysis”, Handbook of algebra, vol. 2, North-Holland, Amsterdam, 2000, 151–274 | MR | Zbl

[37] A. Yu. Pirkovskii, “Stably flat completions of universal enveloping algebras”, Dissertationes Math. (Rozprawy Mat.), 441 (2006), 1–60 | DOI | MR | Zbl