Weak homological dimensions and biflat K\"othe algebras
Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 673-705

Voir la notice de l'article provenant de la source Math-Net.Ru

The homological properties of metrizable Köthe algebras $\lambda(P)$ are studied. A criterion for an algebra $A=\lambda(P)$ to be biflat in terms of the Köthe set $P$ is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator $A\mathbin{\widehat\otimes}A\to A$. The weak homological dimensions (the weak global dimension $\operatorname{w{.}dg}$ and the weak bidimension $\operatorname{w{.}db}$) of biflat Köthe algebras are calculated. Namely, it is shown that the conditions $\operatorname{w{.}db}\lambda(P)\le1$ and $\operatorname{w{.}dg}\lambda(P)\le1$ are equivalent to the nuclearity of $\lambda(P)$; and if $\lambda(P)$ is non-nuclear, then $\operatorname{w{.}dg}\lambda(P)=\operatorname{w{.}db}\lambda(P)=2$. It is established that the nuclearity of a biflat Köthe algebra $\lambda(P)$, under certain additional conditions on the Köthe set $P$, implies the stronger estimate $\operatorname{db}\lambda(P)\le1$, where $\operatorname{db}$ is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Köthe algebra $\lambda(P)$ such that $\operatorname{db}\lambda(P)=2$ (while $\operatorname{w{.}db}\lambda(P)=1$). Finally, it is shown that many biflat Köthe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.
@article{SM_2008_199_5_a3,
     author = {A. Yu. Pirkovskii},
     title = {Weak homological dimensions and biflat {K\"othe} algebras},
     journal = {Sbornik. Mathematics},
     pages = {673--705},
     publisher = {mathdoc},
     volume = {199},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_5_a3/}
}
TY  - JOUR
AU  - A. Yu. Pirkovskii
TI  - Weak homological dimensions and biflat K\"othe algebras
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 673
EP  - 705
VL  - 199
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_5_a3/
LA  - en
ID  - SM_2008_199_5_a3
ER  - 
%0 Journal Article
%A A. Yu. Pirkovskii
%T Weak homological dimensions and biflat K\"othe algebras
%J Sbornik. Mathematics
%D 2008
%P 673-705
%V 199
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_5_a3/
%G en
%F SM_2008_199_5_a3
A. Yu. Pirkovskii. Weak homological dimensions and biflat K\"othe algebras. Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 673-705. http://geodesic.mathdoc.fr/item/SM_2008_199_5_a3/