Lower bounds for algebraic complexity of classical simple Lie algebras
Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 655-662

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact algebraic algorithms for classical simple Lie algebras over fields of characteristic zero are considered. The complexity of an algebra in this computational model is defined as the number of (non-scalar) multiplications of an optimal algorithm (calculating the product of two elements of the algebra). Lower bounds for the algebraic complexity are obtained for algebras in the series $A_l$, $B_l$, $C_l$ and $D_l$. Bibliography: 3 titles.
@article{SM_2008_199_5_a1,
     author = {A. V. Leont'ev},
     title = {Lower bounds for algebraic complexity of classical simple {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {655--662},
     publisher = {mathdoc},
     volume = {199},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_5_a1/}
}
TY  - JOUR
AU  - A. V. Leont'ev
TI  - Lower bounds for algebraic complexity of classical simple Lie algebras
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 655
EP  - 662
VL  - 199
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_5_a1/
LA  - en
ID  - SM_2008_199_5_a1
ER  - 
%0 Journal Article
%A A. V. Leont'ev
%T Lower bounds for algebraic complexity of classical simple Lie algebras
%J Sbornik. Mathematics
%D 2008
%P 655-662
%V 199
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_5_a1/
%G en
%F SM_2008_199_5_a1
A. V. Leont'ev. Lower bounds for algebraic complexity of classical simple Lie algebras. Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 655-662. http://geodesic.mathdoc.fr/item/SM_2008_199_5_a1/