Lower bounds for algebraic complexity of classical simple Lie algebras
Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 655-662
Cet article a éte moissonné depuis la source Math-Net.Ru
Exact algebraic algorithms for classical simple Lie algebras over fields of characteristic zero are considered. The complexity of an algebra in this computational model is defined as the number of (non-scalar) multiplications of an optimal algorithm (calculating the product of two elements of the algebra). Lower bounds for the algebraic complexity are obtained for algebras in the series $A_l$, $B_l$, $C_l$ and $D_l$. Bibliography: 3 titles.
@article{SM_2008_199_5_a1,
author = {A. V. Leont'ev},
title = {Lower bounds for algebraic complexity of classical simple {Lie} algebras},
journal = {Sbornik. Mathematics},
pages = {655--662},
year = {2008},
volume = {199},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_5_a1/}
}
A. V. Leont'ev. Lower bounds for algebraic complexity of classical simple Lie algebras. Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 655-662. http://geodesic.mathdoc.fr/item/SM_2008_199_5_a1/
[1] A. Alder, V. Strassen, “On the algorithmic complexity of associative algebras”, Theoret. Comput. Sci., 15:2 (1981), 201–211 | DOI | MR | Zbl
[2] S. A. Zhoshina, “On the multiplicative complexity of Lie algebras”, Moscow Univ. Math. Bull., 45:4 (1990), 34–36 | MR | Zbl
[3] S. A. Zhoshina, “On the multiplicative complexity of simple the Lie algebras $G_2$, $F_4$, $E_6$, $E_7$, $E_8$ and of semisimple Lie algebras”, Moscow Univ. Math. Bull., 48:4 (1993), 34–36 | MR | Zbl