Non-linear approximation of continuous functions
Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 629-653

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a function $f_0(x)\in C_{[0,1]}$ for which the greedy algorithm in the Faber-Schauder system is divergent in measure on $[0,1]$ is established. It is shown that for each $\varepsilon$, $0\varepsilon1$, there exists a measurable subset $E$ of $ [0,1]$ of measure $|E|>1-\varepsilon$ such that for each $f(x)\in C_{[0,1]}$ one can find a function $\widetilde f(x)\in C_{[0,1]}$ coinciding with $f(x)$ on $E$, whose greedy algorithm in the Faber-Schauder system converges uniformly on $[0,1]$. Bibliography: 33 titles.
@article{SM_2008_199_5_a0,
     author = {M. G. Grigoryan and A. A. Sargsyan},
     title = {Non-linear approximation of continuous functions},
     journal = {Sbornik. Mathematics},
     pages = {629--653},
     publisher = {mathdoc},
     volume = {199},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_5_a0/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - A. A. Sargsyan
TI  - Non-linear approximation of continuous functions
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 629
EP  - 653
VL  - 199
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_5_a0/
LA  - en
ID  - SM_2008_199_5_a0
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A A. A. Sargsyan
%T Non-linear approximation of continuous functions
%J Sbornik. Mathematics
%D 2008
%P 629-653
%V 199
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_5_a0/
%G en
%F SM_2008_199_5_a0
M. G. Grigoryan; A. A. Sargsyan. Non-linear approximation of continuous functions. Sbornik. Mathematics, Tome 199 (2008) no. 5, pp. 629-653. http://geodesic.mathdoc.fr/item/SM_2008_199_5_a0/