Codimension-two singularities in 3D affine control systems with a scalar control
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 613-627 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Codimension-two singularities of the field of totally singular extremal trajectories in 3D affine control systems with scalar control are investigated. These singularities can be of two types: the first is related to singularities of the field of the Hamiltonian system of the maximum principle itself, while the second is related to the degenerate projection of the field of totally singular extremals onto the phase space. The fields of extremal trajectories occurring in these two cases have completely different normal forms and phase portraits. Bibliography: 7 titles.
@article{SM_2008_199_4_a6,
     author = {A. O. Remizov},
     title = {Codimension-two singularities in {3D} affine control systems with a scalar control},
     journal = {Sbornik. Mathematics},
     pages = {613--627},
     year = {2008},
     volume = {199},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a6/}
}
TY  - JOUR
AU  - A. O. Remizov
TI  - Codimension-two singularities in 3D affine control systems with a scalar control
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 613
EP  - 627
VL  - 199
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a6/
LA  - en
ID  - SM_2008_199_4_a6
ER  - 
%0 Journal Article
%A A. O. Remizov
%T Codimension-two singularities in 3D affine control systems with a scalar control
%J Sbornik. Mathematics
%D 2008
%P 613-627
%V 199
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a6/
%G en
%F SM_2008_199_4_a6
A. O. Remizov. Codimension-two singularities in 3D affine control systems with a scalar control. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 613-627. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a6/

[1] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl

[2] A. O. Remizov, “Mnogomernaya konstruktsiya Puankare i osobennosti podnyatykh polei dlya neyavnykh differentsialnykh uravnenii”, SMFN, 19 (2006), 131–170 | MR

[3] R. Roussarie, Modelès locaux de champs et de formes, Astérisque, 30, Soc. Math. de France, Paris, 1975 | MR | Zbl

[4] S. M. Voronin, “Analiticheskaya klassifikatsiya rostkov golomorfnykh otobrazhenii s neizolirovannymi nepodvizhnymi tochkami i postoyannymi multiplikatorami i ee prilozheniya”, Vestn. Chelyab. un-ta. Ser. 3. Matem., mekh., 2 (1999), 12–30 | MR

[5] G. Darboux, “Sur les solutions singulières des équations aux dérivées ordinaires du premier ordre”, Darboux Bull., 4 (1873), 158–176 | Zbl

[6] V. I. Arnol'd, Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., 250, Springer-Verlag, New York–Heidelberg–Berlin, 1988 | MR | Zbl

[7] A. V. Pkhakadze, A. A. Shestakov, “O klassifikatsii osobykh tochek differentsialnogo uravneniya pervogo poryadka, ne razreshennogo otnositelno proizvodnoi”, Matem. sb., 49:1 (1959), 3–12 | MR