Chromatic numbers of real and rational spaces with real or rational forbidden distances
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 579-612
Voir la notice de l'article provenant de la source Math-Net.Ru
Several important aspects of the Nelson-Erdős-Hadwiger classical
problem of combinatorial geometry are considered.
In particular, new lower bounds are obtained for the chromatic numbers
of the spaces $\mathbb{R}^n$ and $\mathbb{Q}^n$ with two, three or four
forbidden distances.
Bibliography: 28 titles.
@article{SM_2008_199_4_a5,
author = {A. M. Raigorodskii and I. M. Shitova},
title = {Chromatic numbers of real and rational spaces with real or rational forbidden distances},
journal = {Sbornik. Mathematics},
pages = {579--612},
publisher = {mathdoc},
volume = {199},
number = {4},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a5/}
}
TY - JOUR AU - A. M. Raigorodskii AU - I. M. Shitova TI - Chromatic numbers of real and rational spaces with real or rational forbidden distances JO - Sbornik. Mathematics PY - 2008 SP - 579 EP - 612 VL - 199 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a5/ LA - en ID - SM_2008_199_4_a5 ER -
A. M. Raigorodskii; I. M. Shitova. Chromatic numbers of real and rational spaces with real or rational forbidden distances. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 579-612. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a5/