A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 557-578

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m>1$ be a real number and let $\Omega\subset\mathbb R^n$, $n\geqslant2$, be a connected smooth domain. Consider the system of quasi-linear elliptic differential equations \begin{align*} \operatorname{div}(|\nabla u|^{m-2}\nabla u)+f(u,v)=0\quad\text{in } \Omega, \\ \operatorname{div}(|\nabla v|^{m-2}\nabla v)+g(u,v)=0\quad\text{in } \Omega, \end{align*} where $u\geqslant0$, $v\geqslant0$, $f$ and $g$ are real functions. Relations between the Liouville non-existence and a priori estimates and existence on bounded domains are studied. Under appropriate conditions, a variety of results on a priori estimates, existence and non-existence of positive solutions have been established. Bibliography: 11 titles.
@article{SM_2008_199_4_a4,
     author = {H. Zou},
     title = {A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems},
     journal = {Sbornik. Mathematics},
     pages = {557--578},
     publisher = {mathdoc},
     volume = {199},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/}
}
TY  - JOUR
AU  - H. Zou
TI  - A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 557
EP  - 578
VL  - 199
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/
LA  - en
ID  - SM_2008_199_4_a4
ER  - 
%0 Journal Article
%A H. Zou
%T A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems
%J Sbornik. Mathematics
%D 2008
%P 557-578
%V 199
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/
%G en
%F SM_2008_199_4_a4
H. Zou. A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 557-578. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/