@article{SM_2008_199_4_a4,
author = {H. Zou},
title = {A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems},
journal = {Sbornik. Mathematics},
pages = {557--578},
year = {2008},
volume = {199},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/}
}
H. Zou. A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 557-578. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/
[1] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., 65, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl
[2] S. I. Pokhozhaev, “Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$”, Soviet Math. Dokl., 6 (1965), 1408–1411 | MR | Zbl
[3] B. Gidas, J. Spruck, “A priori bounds for positive solutions of nonlinear elliptic equations”, Comm. Partial Differential Equations, 6:8 (1981), 883–901 | DOI | MR | Zbl
[4] H. Zou, “A priori estimates and existence for strongly coupled semilinear cooperative elliptic systems”, Comm. Partial Differential Equations, 31:5 (2006), 735–773 | DOI | MR | Zbl
[5] R. H. Fowler, “Further studies of Emden's and similar differential equations”, Quart. J. Math. Oxford Ser., 2:1 (1931), 259–288 | DOI | Zbl
[6] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34:4 (1981), 525–598 | DOI | MR | Zbl
[7] J. Serrin, H. Zou, “Existence of positive entire solutions of elliptic Hamiltonian systems”, Comm. Partial Differential Equations, 23:3–4 (1998), 577–599 | MR | Zbl
[8] H. Zou, “A priori estimates and existence on strongly coupled cooperative elliptic systems”, Glasg. Math. J., 48:3 (2006), 437–457 | DOI | MR | Zbl
[9] B. Franchi, E. Lanconelli, J. Serrin, “Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb{R}^n$”, Adv. Math., 118:2 (1996), 177–243 | DOI | MR | Zbl
[10] W. Reichel, H. Zou, “Non-existence results for semilinear cooperative elliptic systems via moving spheres”, J. Differential Equations, 161:1 (2000), 219–243 | DOI | MR | Zbl
[11] H. Zou, “Existence and non-existence for strongly coupled quasi-linear cooperative elliptic systems”, J. Math. Soc. Japan, 59:2 (2007), 393–421 | DOI | MR | Zbl