A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 557-578
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $m>1$ be a real number and let $\Omega\subset\mathbb R^n$, $n\geqslant2$,
be a connected smooth domain. Consider the system of quasi-linear elliptic differential equations
\begin{align*}
\operatorname{div}(|\nabla u|^{m-2}\nabla u)+f(u,v)=0\quad\text{in } \Omega,
\\
\operatorname{div}(|\nabla v|^{m-2}\nabla v)+g(u,v)=0\quad\text{in } \Omega,
\end{align*} 
where $u\geqslant0$, $v\geqslant0$, $f$ and $g$ are real functions.
Relations between the Liouville non-existence and a priori estimates
and existence on bounded domains are studied. Under appropriate conditions,
a variety of results on a priori estimates, existence and non-existence of positive solutions have been established.
Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_2008_199_4_a4,
     author = {H. Zou},
     title = {A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems},
     journal = {Sbornik. Mathematics},
     pages = {557--578},
     publisher = {mathdoc},
     volume = {199},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/}
}
                      
                      
                    H. Zou. A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 557-578. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/
