A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 557-578 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $m>1$ be a real number and let $\Omega\subset\mathbb R^n$, $n\geqslant2$, be a connected smooth domain. Consider the system of quasi-linear elliptic differential equations \begin{align*} \operatorname{div}(|\nabla u|^{m-2}\nabla u)+f(u,v)&=0\quad\text{in } \Omega, \\ \operatorname{div}(|\nabla v|^{m-2}\nabla v)+g(u,v)&=0\quad\text{in } \Omega, \end{align*} where $u\geqslant0$, $v\geqslant0$, $f$ and $g$ are real functions. Relations between the Liouville non-existence and a priori estimates and existence on bounded domains are studied. Under appropriate conditions, a variety of results on a priori estimates, existence and non-existence of positive solutions have been established. Bibliography: 11 titles.
@article{SM_2008_199_4_a4,
     author = {H. Zou},
     title = {A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems},
     journal = {Sbornik. Mathematics},
     pages = {557--578},
     year = {2008},
     volume = {199},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/}
}
TY  - JOUR
AU  - H. Zou
TI  - A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 557
EP  - 578
VL  - 199
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/
LA  - en
ID  - SM_2008_199_4_a4
ER  - 
%0 Journal Article
%A H. Zou
%T A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems
%J Sbornik. Mathematics
%D 2008
%P 557-578
%V 199
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/
%G en
%F SM_2008_199_4_a4
H. Zou. A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 557-578. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a4/

[1] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., 65, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl

[2] S. I. Pokhozhaev, “Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$”, Soviet Math. Dokl., 6 (1965), 1408–1411 | MR | Zbl

[3] B. Gidas, J. Spruck, “A priori bounds for positive solutions of nonlinear elliptic equations”, Comm. Partial Differential Equations, 6:8 (1981), 883–901 | DOI | MR | Zbl

[4] H. Zou, “A priori estimates and existence for strongly coupled semilinear cooperative elliptic systems”, Comm. Partial Differential Equations, 31:5 (2006), 735–773 | DOI | MR | Zbl

[5] R. H. Fowler, “Further studies of Emden's and similar differential equations”, Quart. J. Math. Oxford Ser., 2:1 (1931), 259–288 | DOI | Zbl

[6] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34:4 (1981), 525–598 | DOI | MR | Zbl

[7] J. Serrin, H. Zou, “Existence of positive entire solutions of elliptic Hamiltonian systems”, Comm. Partial Differential Equations, 23:3–4 (1998), 577–599 | MR | Zbl

[8] H. Zou, “A priori estimates and existence on strongly coupled cooperative elliptic systems”, Glasg. Math. J., 48:3 (2006), 437–457 | DOI | MR | Zbl

[9] B. Franchi, E. Lanconelli, J. Serrin, “Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb{R}^n$”, Adv. Math., 118:2 (1996), 177–243 | DOI | MR | Zbl

[10] W. Reichel, H. Zou, “Non-existence results for semilinear cooperative elliptic systems via moving spheres”, J. Differential Equations, 161:1 (2000), 219–243 | DOI | MR | Zbl

[11] H. Zou, “Existence and non-existence for strongly coupled quasi-linear cooperative elliptic systems”, J. Math. Soc. Japan, 59:2 (2007), 393–421 | DOI | MR | Zbl