Asymptotic behaviour of solutions of
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 539-556

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behaviour of solutions of a second-order semilinear parabolic equation is analyzed in a cylindrical domain that is bounded in the space variables. The dominant term of the asymptotic expansion of the solution as $t\to+\infty$ is found. It is shown that the solution of this problem is asymptotically equivalent to the solution of a certain non-linear ordinary differential equation. Bibliography: 8 titles.
@article{SM_2008_199_4_a3,
     author = {Yu. V. Egorov and V. A. Kondratiev},
     title = {Asymptotic behaviour of solutions of},
     journal = {Sbornik. Mathematics},
     pages = {539--556},
     publisher = {mathdoc},
     volume = {199},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a3/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondratiev
TI  - Asymptotic behaviour of solutions of
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 539
EP  - 556
VL  - 199
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a3/
LA  - en
ID  - SM_2008_199_4_a3
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondratiev
%T Asymptotic behaviour of solutions of
%J Sbornik. Mathematics
%D 2008
%P 539-556
%V 199
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a3/
%G en
%F SM_2008_199_4_a3
Yu. V. Egorov; V. A. Kondratiev. Asymptotic behaviour of solutions of. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 539-556. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a3/