Asymptotic behaviour of solutions of
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 539-556
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour of solutions of a second-order semilinear parabolic equation is analyzed in a cylindrical domain that is bounded in the space variables. The dominant term of the asymptotic expansion of the solution as $t\to+\infty$ is found. It is shown that the solution of this problem is asymptotically equivalent to the solution of a certain non-linear ordinary differential equation. Bibliography: 8 titles.
@article{SM_2008_199_4_a3,
     author = {Yu. V. Egorov and V. A. Kondratiev},
     title = {Asymptotic behaviour of solutions of},
     journal = {Sbornik. Mathematics},
     pages = {539--556},
     year = {2008},
     volume = {199},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a3/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondratiev
TI  - Asymptotic behaviour of solutions of
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 539
EP  - 556
VL  - 199
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a3/
LA  - en
ID  - SM_2008_199_4_a3
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondratiev
%T Asymptotic behaviour of solutions of
%J Sbornik. Mathematics
%D 2008
%P 539-556
%V 199
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a3/
%G en
%F SM_2008_199_4_a3
Yu. V. Egorov; V. A. Kondratiev. Asymptotic behaviour of solutions of. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 539-556. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a3/

[1] P. Baras, L. Véron, “Comportement asymptotique de la solution d'une équation d'évolution semi-linéaire de la chaleur”, Comm. Partial Differential Equations, 4:7 (1979), 795–807 | DOI | MR | Zbl

[2] V. A. Kondratiev, L. Véron, “Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations”, Asymptot. Anal., 14:2 (1997), 117–156 | MR | Zbl

[3] I. V. Filimonova, “Asymptotic behaviour of solutions of a semilinear parabolic equation in a cylindrical domain”, Sb. Math., 195:2 (2004), 287–302 | DOI | MR | Zbl

[4] Yu. V. Egorov, V. A. Kondrat'ev, O. A. Oleinik, “Asymptotic behaviour of the solutions of non-linear elliptic and parabolic systems in tube domains”, Sb. Math., 189:3 (1998), 359–382 | DOI | MR | Zbl

[5] Yu. V. Egorov, V. A. Kondratiev, On asymptotic behavior of solutions of semi-linear parabolic boundary value problems, Université Paul Sabatier, Toulouse, Labo MIP. Rapport interne, 1998, No98.08

[6] Th. K. Boni, “On the asymptotic behavior of solutions for some semilinear parabolic and elliptic equations of second order with nonlinear boundary conditions”, Nonlinear Anal., 45:7 (2001), 895–908 | DOI | MR | Zbl

[7] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968 ; Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, t. 1, Mir, M., 1971 | MR | Zbl | MR | Zbl

[8] G. Stampacchia, “Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier (Grenoble), 15:1 (1965), 189–257 | MR | Zbl