Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 511-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Instantaneous support shrinking is studied for a doubly non-linear degenerate parabolic equation in the case of slow diffusion when, in general, the Cauchy initial data are Radon measures. For a non-negative solution, a necessary and sufficient condition for instantaneous support shrinking is obtained in terms of the local behaviour of the mass of the initial data. In the same terms, estimates are obtained for the size of the support, that are sharp with respect to order. Bibliography: 24 titles.
@article{SM_2008_199_4_a2,
     author = {S. P. Degtyarev},
     title = {Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the {Cauchy} problem for a~doubly non-linear parabolic equation with absorption},
     journal = {Sbornik. Mathematics},
     pages = {511--538},
     year = {2008},
     volume = {199},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a2/}
}
TY  - JOUR
AU  - S. P. Degtyarev
TI  - Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 511
EP  - 538
VL  - 199
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a2/
LA  - en
ID  - SM_2008_199_4_a2
ER  - 
%0 Journal Article
%A S. P. Degtyarev
%T Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption
%J Sbornik. Mathematics
%D 2008
%P 511-538
%V 199
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a2/
%G en
%F SM_2008_199_4_a2
S. P. Degtyarev. Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 511-538. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a2/

[1] R. Kersner, A. Shishkov, “Instantaneous shrinking of the support of energy solutions”, J. Math. Anal. Appl., 198:3 (1996), 729–750 | DOI | MR | Zbl

[2] A. E. Shishkov, “Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order”, Sb. Math., 190:12 (1999), 1843–1869 | DOI | MR | Zbl

[3] S. Antontsev, J. I. Díaz, S. I. Shmarev, “The support shrinking properties for solutions of quasilinear parabolic equations with strong absorption terms”, Ann. Fac. Sci. Toulouse Math. (6), 4:1 (1995), 5–30 | MR | Zbl

[4] S. N. Antontsev, J. I. Diaz, S. I. Shmarev, Energy methods for free boundary problems. Applications to nonlinear PDEs and fluid mechanics, Progr. Nonlinear Differential Equations Appl., 48, Birkhäuzer, Basel–Boston, MA, 2002 | MR | Zbl

[5] M. Ughi, “Initial behavior of the free boundary for a porous media equation with strong absorption”, Adv. Math. Sci. Appl., 11:1 (2001), 333–345 | MR | Zbl

[6] A. S. Kalashnikov, “On the dependence of properties of solutions of parabolic equations in unbounded domains on the behavior of the coefficients at infinity”, Math. USSR-Sb., 53:2 (1986), 399–410 | DOI | MR | Zbl | Zbl

[7] A. S. Kalashnikov, “On the behavior of solutions of the Cauchy problem for parabolic systems with nonlinear dissipation near the initial hyperplane”, J. Math. Sci., 69:2 (1994), 1004–1010 | DOI | MR | Zbl

[8] U. G. Abdullaev, “Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation on the behavior of the coefficients at infinity”, Math. Notes, 63:3 (1998), 285–292 | DOI | MR | Zbl

[9] U. G. Abdullaev, “Exact local estimates for the supports of solutions in problems for nonlinear parabolic equations”, Sb. Math., 186:8 (1995), 1085–1106 | DOI | MR | Zbl

[10] K. Ishige, “On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation”, SIAM J. Math. Anal., 27:5 (1996), 1235–1260 | DOI | MR | Zbl

[11] H. J. Fan, “Cauchy problem of some doubly degenerate parabolic equations with initial datum a measure”, Acta Math. Sin. (Engl. Ser.), 20:4 (2004), 663–682 | DOI | MR | Zbl

[12] M. Tsutsumi, “On solutions of some doubly nonlinear degenerate parabolic equations with absorption”, J. Math. Anal. Appl, 132:1 (1988), 187–212 | DOI | MR | Zbl

[13] D. Andreucci, A. F. Tedeev, “Universal bounds at the blow-up time for nonlinear parabolic equations”, Adv. Differential Equations, 10:1 (2005), 89–120 | MR | Zbl

[14] D. Andreucci, A. F. Tedeev, “Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity”, Interfaces Free Bound., 3:3 (2001), 233–264 | MR | Zbl

[15] D. Andreucci, A. F. Tedeev, “A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary”, J. Math. Anal. Appl., 231:2 (1999), 543–567 | DOI | MR | Zbl

[16] F. Bernis, “Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption”, Proc. Roy. Soc. Edinburgh Sect. A, 104:1–2 (1986), 1–19 | MR | Zbl

[17] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[18] E. Di Benedetto, M. A. Herrero, “On the Cauchy problem and initial traces for a degenerate parabolic equation”, Trans. Amer. Math. Soc., 314:1 (1989), 187–224 | DOI | MR | Zbl

[19] M. Bertsch, “A class of degenerate diffusion equations with a singular nonlinear term”, Nonlinear Anal., 7:1 (1983), 117–127 | DOI | MR | Zbl

[20] M. Bertsch, R. Kersner, L. A. Peletier, “Positivity versus localization in degenerate diffusion equations”, Nonlinear Anal., 9:9 (1985), 987–1008 | DOI | MR | Zbl

[21] D. Aronson, M. G. Crandall, L. A. Peletier, “Stabilization of solutions of a degenerate nonlinear diffusion problem”, Nonlinear Anal., 6:10 (1982), 1001–1022 | DOI | MR | Zbl

[22] S. N. Antontsev, “On the localization of solutions of nonlinear degenerate elliptic and parabolic equations”, Soviet Math. Dokl., 24:2 (1981), 420–424 | MR | Zbl

[23] F. Bernis, “Qualitative properties for some nonlinear higher order degenerate parabolic equations”, Houston J. Math., 14:3 (1988), 319–352 | MR | Zbl

[24] A. E. Shishkov, A. G. Shchelkov, “Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order”, Izv. Math., 62:3 (1998), 601–626 | DOI | MR | Zbl