@article{SM_2008_199_4_a2,
author = {S. P. Degtyarev},
title = {Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the {Cauchy} problem for a~doubly non-linear parabolic equation with absorption},
journal = {Sbornik. Mathematics},
pages = {511--538},
year = {2008},
volume = {199},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a2/}
}
TY - JOUR AU - S. P. Degtyarev TI - Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption JO - Sbornik. Mathematics PY - 2008 SP - 511 EP - 538 VL - 199 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a2/ LA - en ID - SM_2008_199_4_a2 ER -
%0 Journal Article %A S. P. Degtyarev %T Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption %J Sbornik. Mathematics %D 2008 %P 511-538 %V 199 %N 4 %U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a2/ %G en %F SM_2008_199_4_a2
S. P. Degtyarev. Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 511-538. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a2/
[1] R. Kersner, A. Shishkov, “Instantaneous shrinking of the support of energy solutions”, J. Math. Anal. Appl., 198:3 (1996), 729–750 | DOI | MR | Zbl
[2] A. E. Shishkov, “Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order”, Sb. Math., 190:12 (1999), 1843–1869 | DOI | MR | Zbl
[3] S. Antontsev, J. I. Díaz, S. I. Shmarev, “The support shrinking properties for solutions of quasilinear parabolic equations with strong absorption terms”, Ann. Fac. Sci. Toulouse Math. (6), 4:1 (1995), 5–30 | MR | Zbl
[4] S. N. Antontsev, J. I. Diaz, S. I. Shmarev, Energy methods for free boundary problems. Applications to nonlinear PDEs and fluid mechanics, Progr. Nonlinear Differential Equations Appl., 48, Birkhäuzer, Basel–Boston, MA, 2002 | MR | Zbl
[5] M. Ughi, “Initial behavior of the free boundary for a porous media equation with strong absorption”, Adv. Math. Sci. Appl., 11:1 (2001), 333–345 | MR | Zbl
[6] A. S. Kalashnikov, “On the dependence of properties of solutions of parabolic equations in unbounded domains on the behavior of the coefficients at infinity”, Math. USSR-Sb., 53:2 (1986), 399–410 | DOI | MR | Zbl | Zbl
[7] A. S. Kalashnikov, “On the behavior of solutions of the Cauchy problem for parabolic systems with nonlinear dissipation near the initial hyperplane”, J. Math. Sci., 69:2 (1994), 1004–1010 | DOI | MR | Zbl
[8] U. G. Abdullaev, “Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation on the behavior of the coefficients at infinity”, Math. Notes, 63:3 (1998), 285–292 | DOI | MR | Zbl
[9] U. G. Abdullaev, “Exact local estimates for the supports of solutions in problems for nonlinear parabolic equations”, Sb. Math., 186:8 (1995), 1085–1106 | DOI | MR | Zbl
[10] K. Ishige, “On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation”, SIAM J. Math. Anal., 27:5 (1996), 1235–1260 | DOI | MR | Zbl
[11] H. J. Fan, “Cauchy problem of some doubly degenerate parabolic equations with initial datum a measure”, Acta Math. Sin. (Engl. Ser.), 20:4 (2004), 663–682 | DOI | MR | Zbl
[12] M. Tsutsumi, “On solutions of some doubly nonlinear degenerate parabolic equations with absorption”, J. Math. Anal. Appl, 132:1 (1988), 187–212 | DOI | MR | Zbl
[13] D. Andreucci, A. F. Tedeev, “Universal bounds at the blow-up time for nonlinear parabolic equations”, Adv. Differential Equations, 10:1 (2005), 89–120 | MR | Zbl
[14] D. Andreucci, A. F. Tedeev, “Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity”, Interfaces Free Bound., 3:3 (2001), 233–264 | MR | Zbl
[15] D. Andreucci, A. F. Tedeev, “A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary”, J. Math. Anal. Appl., 231:2 (1999), 543–567 | DOI | MR | Zbl
[16] F. Bernis, “Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption”, Proc. Roy. Soc. Edinburgh Sect. A, 104:1–2 (1986), 1–19 | MR | Zbl
[17] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl
[18] E. Di Benedetto, M. A. Herrero, “On the Cauchy problem and initial traces for a degenerate parabolic equation”, Trans. Amer. Math. Soc., 314:1 (1989), 187–224 | DOI | MR | Zbl
[19] M. Bertsch, “A class of degenerate diffusion equations with a singular nonlinear term”, Nonlinear Anal., 7:1 (1983), 117–127 | DOI | MR | Zbl
[20] M. Bertsch, R. Kersner, L. A. Peletier, “Positivity versus localization in degenerate diffusion equations”, Nonlinear Anal., 9:9 (1985), 987–1008 | DOI | MR | Zbl
[21] D. Aronson, M. G. Crandall, L. A. Peletier, “Stabilization of solutions of a degenerate nonlinear diffusion problem”, Nonlinear Anal., 6:10 (1982), 1001–1022 | DOI | MR | Zbl
[22] S. N. Antontsev, “On the localization of solutions of nonlinear degenerate elliptic and parabolic equations”, Soviet Math. Dokl., 24:2 (1981), 420–424 | MR | Zbl
[23] F. Bernis, “Qualitative properties for some nonlinear higher order degenerate parabolic equations”, Houston J. Math., 14:3 (1988), 319–352 | MR | Zbl
[24] A. E. Shishkov, A. G. Shchelkov, “Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order”, Izv. Math., 62:3 (1998), 601–626 | DOI | MR | Zbl