The test rank of a~soluble product of free Abelian groups
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 495-510

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the variety $\mathbb A^l$ of all soluble groups of derived length at most $l$, $l\geqslant2$. Suppose that a finitely generated group $G$ is a free product in the variety $\mathbb A^l$ of Abelian torsion-free groups. It is proved that the test rank of $G$ is one less than the number of factors. A test set of elements is written out explicitly. Bibliography: 27 titles.
@article{SM_2008_199_4_a1,
     author = {Ch. K. Gupta and E. I. Timoshenko},
     title = {The test rank of a~soluble product of free {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {495--510},
     publisher = {mathdoc},
     volume = {199},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a1/}
}
TY  - JOUR
AU  - Ch. K. Gupta
AU  - E. I. Timoshenko
TI  - The test rank of a~soluble product of free Abelian groups
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 495
EP  - 510
VL  - 199
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a1/
LA  - en
ID  - SM_2008_199_4_a1
ER  - 
%0 Journal Article
%A Ch. K. Gupta
%A E. I. Timoshenko
%T The test rank of a~soluble product of free Abelian groups
%J Sbornik. Mathematics
%D 2008
%P 495-510
%V 199
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a1/
%G en
%F SM_2008_199_4_a1
Ch. K. Gupta; E. I. Timoshenko. The test rank of a~soluble product of free Abelian groups. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 495-510. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a1/