The test rank of a~soluble product of free Abelian groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 495-510
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the variety $\mathbb A^l$ of all soluble groups of derived length at most $l$, $l\geqslant2$. Suppose that a finitely generated group $G$ is a free product in the variety $\mathbb A^l$
of Abelian torsion-free groups. It is proved that the test rank of $G$ is one less than the number of factors. A test set of elements is written out explicitly.
Bibliography: 27 titles.
			
            
            
            
          
        
      @article{SM_2008_199_4_a1,
     author = {Ch. K. Gupta and E. I. Timoshenko},
     title = {The test rank of a~soluble product of free {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {495--510},
     publisher = {mathdoc},
     volume = {199},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a1/}
}
                      
                      
                    Ch. K. Gupta; E. I. Timoshenko. The test rank of a~soluble product of free Abelian groups. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 495-510. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a1/
