On the representation of elements of a von Neumann algebra
Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 477-493
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that every skew-Hermitian element of any properly infinite von Neumann algebra can be represented in the form of a finite sum of commutators of projections in this algebra. A new commutation condition for projections in terms of their upper (lower) bound in the lattice of all projections of the algebra is obtained. For the full matrix algebra the set of operators with canonical trace zero is described in terms of finite sums of commutators of projections and the domain in which the trace is positive is described in terms of finite sums of pairwise products of projections. Applications to $AF$-algebras are obtained. Bibliography: 33 titles.
@article{SM_2008_199_4_a0,
     author = {A. M. Bikchentaev},
     title = {On the representation of elements of a von {Neumann} algebra},
     journal = {Sbornik. Mathematics},
     pages = {477--493},
     year = {2008},
     volume = {199},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_4_a0/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - On the representation of elements of a von Neumann algebra
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 477
EP  - 493
VL  - 199
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_4_a0/
LA  - en
ID  - SM_2008_199_4_a0
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T On the representation of elements of a von Neumann algebra
%J Sbornik. Mathematics
%D 2008
%P 477-493
%V 199
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2008_199_4_a0/
%G en
%F SM_2008_199_4_a0
A. M. Bikchentaev. On the representation of elements of a von Neumann algebra. Sbornik. Mathematics, Tome 199 (2008) no. 4, pp. 477-493. http://geodesic.mathdoc.fr/item/SM_2008_199_4_a0/

[1] P. Yu. Wu, “Additive combinations of special operators”, Functional analysis and operator theory (Warszawa, Poland, 1992), Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994, 337–361 | MR | Zbl

[2] P. Yu. Wu, “The operator factorization problems”, Linear Algebra Appl., 117 (1989), 35–63 | DOI | MR | Zbl

[3] L. W. Marcoux, “On the linear span of the projections in certain simple $C^*$-algebras”, Indiana Univ. Math. J., 51:3 (2002), 753–771 | DOI | MR | Zbl

[4] L. W. Marcoux, “Sums of small number of commutators”, J. Operator Theory, 56:1 (2006), 111–142 | MR | Zbl

[5] A. M. Bikchentaev, “Representation of linear operators in a Hilbert space in the form of finite sums of products of projectors”, Russian Acad. Sci. Dokl. Math., 68:3 (2003), 376–379 | MR

[6] A. M. Bikchentaev, “On representation of elements of a von Neumann algebra in the form of finite sums of products of projections”, Siberian Math. J., 46:1 (2005), 24–34 | DOI | MR | Zbl

[7] A. M. Bikchentaev, “Representation of elements of von Neumann algebras in the form of finite sums of products of projections. II”, Proc. Inter. Conf. Operator Theory 20 (Timisoara, Romania, 2004), Theta Ser. Adv. Math., 6, Theta, Bucharest, 2006, 15–23 | MR | Zbl

[8] A. M. Bikchentaev, A. N. Sherstnev, “Projective convex combinations in $C^*$-algebras with the unitary factorization property”, Math. Notes, 76:3–4 (2004), 578–581 | DOI | MR | Zbl

[9] A. M. Bikchentaev, “Projection-convex combinations in $C^*$-algebras and the invariant subspace problem. I”, Math. Notes, 79:1–2 (2006), 285–290 | DOI | MR | Zbl

[10] E. A. Gorin, “Some remarks in connection with Gel'fand's theorems on the group of invertible elements of a Banach algebra”, Funct. Anal. Appl., 12:1 (1978), 54–55 | DOI | MR | Zbl | Zbl

[11] J. Cuntz, G. K. Pedersen, “Equivalence and traces on $C^*$-algebras”, J. Funct. Anal., 33:2 (1979), 135–164 | DOI | MR | Zbl

[12] Th. Fack, “Finite sums of commutators in $C^*$-algebras”, Ann. Inst. Fourier (Grenoble), 32:1 (1982), 129–137 | MR | Zbl

[13] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[14] V. B. Lidskij, “Nonselfadjoint operators with a trace”, Amer. Math. Soc. Transl. Ser. 2, 47 (1965), 43–46 | MR | Zbl | Zbl

[15] I. M. Glazman, Yu. I. Lyubich, Finite-dimensional linear analysis: A systematic presentation in problem form, MIT Press, Cambridge, MA–London, 1974 | MR | MR | Zbl | Zbl

[16] K. R. Davidson, $C^*$-algebras by example, Fields Inst. Monogr., 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[17] S. K. Berberian, Baer ${}^*$-rings, Grundlehren Math. Wiss., 195, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl

[18] A. F. Beardon, The geometry of discrete groups, Grad. Texts in Math., 91, Springer-Verlag, New York–Heidelberg–Berlin, 1983 | MR | MR | Zbl | Zbl

[19] C. Pop, “Finite sums of commutators”, Proc. Amer. Math. Soc., 130:10 (2002), 3039–3041 | DOI | MR | Zbl

[20] C. Pearcy, D. Topping, “Sums of small numbers of idempotents”, Michigan Math. J., 14:4 (1967), 453–465 | DOI | MR | Zbl

[21] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Boston, MA, 1990 | MR | Zbl

[22] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, NJ–Toronto, ON–London, 1967 | MR | MR | Zbl | Zbl

[23] A. M. Bikchentaev, “On a property of $L_p$-spaces on semifinite von Neumann algebras”, Math. Notes, 64:2 (1998), 159–163 | DOI | MR | Zbl

[24] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, vol. 1, 2, Frederick Ungar, New York, 1961–1963 | MR | MR | Zbl | Zbl

[25] J. J. Koliha, V. Rakočević, “Fredholm properties of the difference of orthogonal projections in a Hilbert space”, Integral Equations Operator Theory, 52:1 (2005), 125–134 | DOI | MR | Zbl

[26] D. M. Topping, “Vector lattices of self-adjoint operators”, Trans. Amer. Math. Soc., 115 (1965), 14–30 | DOI | MR | Zbl

[27] W. Rehder, “On the commutativity of two projections”, Elem. Math., 35 (1980), 120–122 | MR | Zbl

[28] M. J. Maczynski, “A numerical characterization of commuting projections in Hilbert space”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 29:3–4 (1981), 157–163 | MR | Zbl

[29] S. S. Holland, jr., “The eigenvalues of the sum of two projections”, Inner product spaces and applications, Pitman Res. Notes Math. Ser., 376, Longman, Harlow, 1997, 54–64 | MR | Zbl

[30] A. Paszkiewicz, “Any selfadjoint operator is a finite linear combination of projectors”, Bull. L'Acad. Polon. Sci. Sér. Sci. Math., 28:7–8 (1980), 337–345 | MR | Zbl

[31] P. A. Fillmore, “On sums of projections”, J. Functional Analysis, 4:1 (1969), 146–152 | DOI | MR | Zbl

[32] P. A. Fillmore, C. K. Fong, A. R. Sourour, “Real parts of quasinilpotent operators”, Proc. Edinburgh Math. Soc. (2), 22 (1979), 263–269 | DOI | MR | Zbl

[33] A. I. Kostrikin, Yu. I. Manin, Linear algebra and geometry, Algebra, 1, Gordon and Breach, New York, 1989 | MR | MR | Zbl | Zbl