Multirectangular characteristics for Köthe power spaces of the second kind
Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 459-475 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Isomorphisms of the so-called Köthe power spaces of the second kind are considered. These spaces are determined by a pair of sequences of positive numbers. Counting functions for a pair of sequences ($m$-rectangular characteristics of the corresponding Köthe space of the second kind) are introduced. They are shown to be invariant under isomorphisms. The proof is based on the construction of special compound invariants suitable for the class of spaces under consideration. New results on the linear topological structure of spaces of analytic functions in multicircular domains are obtained as an application. Bibliography: 29 titles.
@article{SM_2008_199_3_a6,
     author = {P. A. Chalov},
     title = {Multirectangular characteristics for {K\"othe} power spaces of the second kind},
     journal = {Sbornik. Mathematics},
     pages = {459--475},
     year = {2008},
     volume = {199},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_3_a6/}
}
TY  - JOUR
AU  - P. A. Chalov
TI  - Multirectangular characteristics for Köthe power spaces of the second kind
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 459
EP  - 475
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_3_a6/
LA  - en
ID  - SM_2008_199_3_a6
ER  - 
%0 Journal Article
%A P. A. Chalov
%T Multirectangular characteristics for Köthe power spaces of the second kind
%J Sbornik. Mathematics
%D 2008
%P 459-475
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2008_199_3_a6/
%G en
%F SM_2008_199_3_a6
P. A. Chalov. Multirectangular characteristics for Köthe power spaces of the second kind. Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 459-475. http://geodesic.mathdoc.fr/item/SM_2008_199_3_a6/

[1] A. Pełczyński, “On the approximation of $S$-spaces by finite dimensional spaces”, Bull. Acad. Polon. Sci. Cl. III, 5:9 (1957), 879–881 | MR | Zbl

[2] A. N. Kolmogorov, “O lineinoi razmernosti topologicheskikh vektornykh prostranstv”, Dokl. AN SSSR, 120:2 (1958), 239–241 | MR | Zbl

[3] C. Bessaga, A. Pełczyński, S. Rolewicz, “On diametral approximative dimension and linear homogeneity of $F$-spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 9:9 (1961), 677–683 | MR | Zbl

[4] B. S. Mityagin, “Approximate dimension and bases in nuclear spaces”, Russian Math. Surveys, 16:4 (1961), 59–127 | DOI | MR | MR | Zbl

[5] M. M. Dragilev, “On special dimensions defined on some classes of Köthe spaces”, Math. USSR-Sb., 9:2 (1969), 213–228 | DOI | MR | Zbl | Zbl

[6] M. M. Dragilev, “Këte spaces differing in diametral dimensionality”, Siberian Math. J., 11:3 (1970), 389–399 | DOI | MR | Zbl | Zbl

[7] M. M. Dragilev, “O pravilnykh bazisakh v yadernykh prostranstvakh”, Matem. sb., 68(110):2(10) (1965), 153–173 | MR | Zbl

[8] B. S. Mityagin, “Riesz nuclear scales”, Soviet Math. Dokl., 2 (1961), 309–312 | MR | Zbl

[9] S. Rolewicz, “On spaces of holomorphic functions”, Studia Math., 21 (1962), 135–160 | MR | Zbl

[10] V. P. Zakharyuta, “Lineinye topologicheskie invarianty i izomorfizm prostranstv analiticheskikh funktsii”, Matematicheskii analiz i ego prilozheniya, t. 2, Izd-vo Rost. un-ta, Rostov-na-Donu, 1970, 3–13 ; 1971, 176–180 | MR | MR

[11] V. P. Zakharyuta, “Ob izomorfizme i kvaziekvivalentnosti bazisov dlya stepennykh prostranstv Këte”, Teoriya operatorov v lineinykh prostranstvakh, Trudy sedmoi zimnei shkoly po matematicheskomu programmirovaniyu i smezhnym voprosam (Drogobych, 1974), TsEMI, M., 1976, 101–126 | MR

[12] V. P. Zakharyuta, “On the isomorphism and quasiequivalence of bases for Köthe power spaces”, Soviet Math. Dokl., 16:2 (1975), 411–414 | MR | Zbl

[13] V. P. Zakharyuta, “Generalized Mityagin invariants and a continuum of pairwise nonisomorphic spaces of analytic functions”, Functional Anal. Appl., 11:3 (1977), 182–188 | DOI | MR | Zbl | Zbl

[14] B. S. Mityagin, “Ekvivalentnost bazisov v gilbertovykh shkalakh”, Studia Math., 37:2 (1971), 111–137 | MR | Zbl

[15] V. P. Zakharyuta, “Slozhnye poperechniki i lineinye topologicheskie invarianty”, Shkola po teorii operatorov v funktsionalnykh prostranstvakh (tezisy dokladov), Minsk, 1978, 51–52

[16] P. A. Chalov, “Kvaziekvivalentnost bazisov v semeistvakh gilbertovykh prostranstv”, Aktualnye voprosy matematicheskogo analiza, Izd-vo Rost. un-ta, Rostov-na-Donu, 1978, 167–173

[17] P. A. Chalov, Lineinye topologicheskie invarianty na klasse semeistv gilbertovykh prostranstv, dep. v VINITI 4853–80

[18] P. A. Chalov, M. M. Dragilev, V. P. Zahariuta, “Pairs of finite-type power series spaces”, Proceedings of the Second International Workshop on Functional Analysis (Trier, Germany), Note Mat., 17, 1997, 121–142 | MR | Zbl

[19] V. P. Zakharyuta, P. A. Chalov, “Finite families of $l_p$-spaces and multirectangular characteristics”, Siberian Math. J., 42:3 (2001), 455–464 | DOI | MR | Zbl

[20] P. Chalov, T. Terzioğlu, V. Zahariuta, “Multirectangular invariants for power Köthe spaces”, J. Math. Anal. Appl., 297:2 (2004), 673–695 | DOI | MR | Zbl

[21] P. A. Chalov, P. B. Djakov, T. Terzioğlu, V. P. Zahariuta, “On Cartesian products of locally convex spaces”, Linear topological spaces and complex analysis (Ankara, Turkey, 1995), Linear Topol. Spaces Complex Anal., 2, Middle East Technical Univ., Ankara, 1995, 9–33 | MR | Zbl

[22] P. A. Chalov, T. Terzioğlu, V. P. Zahariuta, “Compound invariants and mixed $F$-, $DF$-power series spaces”, Canad. J. Math., 50:6 (1998), 1138–1162 | MR | Zbl

[23] P. B. Djakov, V. P. Zahariuta, “On Dragilev type power Köthe spaces”, Studia Math., 120:3 (1996), 219–234 | MR | Zbl

[24] R. Meise, D. Vogt, Introduction to functional analysis, Oxf. Grad. Texts Math., 2, Clarendon Press, Oxford Univ. Press, New York, 1997 | MR | Zbl

[25] M. M. Dragilev, Bazisy v prostranstvakh Këte, Izd-vo Rost. un-ta, Rostov-na-Donu, 1983 | Zbl

[26] V. Zahariuta, “Linear topologic invariants and their applications to isomorphic classification of generalized power spaces”, Turkish J. Math., 20:2 (1996), 237–289 | MR | Zbl

[27] P. B. Djakov, “A short proof of the theorem of Crone and Robinson on quasiequivalence of regular bases”, Studia Math., 53 (1975), 269–271 | MR | Zbl

[28] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[29] M. Hall, jr., Combinatorial theory, Blaisdell, Waltham, MA–Toronto, ON–London, 1967 | MR | MR | Zbl | Zbl