@article{SM_2008_199_3_a5,
author = {A. Kh. Khanmamedov},
title = {The solution of {Cauchy's} problem for the {Toda} lattice with limit periodic initial data},
journal = {Sbornik. Mathematics},
pages = {449--458},
year = {2008},
volume = {199},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_3_a5/}
}
A. Kh. Khanmamedov. The solution of Cauchy's problem for the Toda lattice with limit periodic initial data. Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 449-458. http://geodesic.mathdoc.fr/item/SM_2008_199_3_a5/
[1] M. Toda, Theory of nonlinear lattices, Springer Ser. Solid-State Sci., 20, Springer-Verlag, Berlin, 1989 | MR | Zbl
[2] S. V. Manakov, “Complete integrability and stochastization of discrete dynamical systems”, Soviet Physics JETP, 40:2 (1975), 269–274 | MR
[3] S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, V. E. Zakharov, Theory of solitons, Contemp. Soviet Math., Plenum, New York–London, 1984 | MR | MR | Zbl | Zbl
[4] G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Math. Surveys Monogr., 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[5] A. I. Aptekarev, E. M. Nikishin, “The scattering problem for a discrete Sturm–Liouville operator”, Math. USSR-Sb., 49:2 (1984), 325–355 | DOI | MR | MR | Zbl | Zbl
[6] A. Kh. Khanmamedov, “The rapidly decreasing solution of the Cauchy problem for the Toda lattice”, Theoret. and Math. Phys., 142:1 (2005), 1–7 | DOI | MR
[7] M. Kac, P. van Moerbeke, “On some periodic Toda lattices”, Proc. Nat. Acad. Sci. U.S.A., 72:4 (1975), 1627–1629 | DOI | MR | Zbl
[8] E. Date, Sh. Tanaka, “Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice”, Progr. Theoret. Phys., 55:2 (1976), 457–465 | DOI | MR | Zbl
[9] A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | DOI | MR | Zbl
[10] A. I. Aptekarev, A. Branquinho, “Padé approximants and complex high order Toda lattices”, J. Comput. Appl. Math., 155:2 (2003), 231–237 | DOI | MR | Zbl
[11] I. M. Krichever, “Algebraic curves and non-linear difference equations”, Russian Math. Surveys, 33:4 (1978), 255–256 | DOI | MR | Zbl | Zbl
[12] Yu. M. Berezanskij, “Integration of nonlinear difference equations by the inverse spectral problem method”, Soviet Math. Dokl., 31:2 (1985), 264–267 | MR | Zbl
[13] V. A. Yurko, “Integrable dynamical systems associated with higher-order difference operators”, Russian Math. (Iz. VUZ), 42:10 (1999), 69–79 | MR | Zbl
[14] N. E. Firsova, “On solution of the Cauchy problem for the Korteweg–de Vries equation with initial data the sum of a periodic and a rapidly decreasing function”, Math. USSR-Sb., 63:1 (1989), 257–265 | DOI | MR | Zbl | Zbl
[15] I. Egorova, J. Michor, G. Teschl, “Inverse scattering transform for the Toda hierarchy with quasi-periodic background”, Proc. Amer. Math. Soc., 135:6 (2007), 1817–1827 | DOI | MR | Zbl
[16] A. Kh. Khanmamedov, “Direct and inverse scattering problems for the perturbed Hill difference equation”, Sb. Math., 196:10 (2005), 1529–1552 | DOI | MR
[17] Ag. Kh. Khanmamedov, “Transformation operators for the perturbed Hill difference equation and one of their applications”, Siberian Math. J., 44:4 (2003), 729–738 | DOI | MR | Zbl