Topology of the Liouville foliation on a 2-sphere in the Dullin-Matveev integrable case
Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 411-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the study of the topology of the Liouville foliations of the Dullin-Matveev integrable case. The critical point set of the Hamiltonian is found, the types of isoenergy surfaces are calculated, the non-degeneracy conditions are verified, the types of non-degenerate points of the Poisson action are determined, the moment map is investigated and the bifurcation diagram is constructed. A test for the Bott property is verified by numerical simulation. The indices of critical circles, the bifurcation types and the rough molecules are found. The rough Liouville classification of this integrable case is virtually accomplished as a result. Bibliography: 24 titles.
@article{SM_2008_199_3_a4,
     author = {A. Yu. Moskvin},
     title = {Topology of the {Liouville} foliation on a~2-sphere in the {Dullin-Matveev} integrable case},
     journal = {Sbornik. Mathematics},
     pages = {411--448},
     year = {2008},
     volume = {199},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_3_a4/}
}
TY  - JOUR
AU  - A. Yu. Moskvin
TI  - Topology of the Liouville foliation on a 2-sphere in the Dullin-Matveev integrable case
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 411
EP  - 448
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_3_a4/
LA  - en
ID  - SM_2008_199_3_a4
ER  - 
%0 Journal Article
%A A. Yu. Moskvin
%T Topology of the Liouville foliation on a 2-sphere in the Dullin-Matveev integrable case
%J Sbornik. Mathematics
%D 2008
%P 411-448
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2008_199_3_a4/
%G en
%F SM_2008_199_3_a4
A. Yu. Moskvin. Topology of the Liouville foliation on a 2-sphere in the Dullin-Matveev integrable case. Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 411-448. http://geodesic.mathdoc.fr/item/SM_2008_199_3_a4/

[1] A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russian Math. Surveys, 50:3 (1995), 473–501 | DOI | MR | Zbl

[2] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl | Zbl

[3] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[4] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[5] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | MR | Zbl

[6] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | MR | Zbl

[7] G. Khagigatdust, Topologiya sloenii Liuvillya dlya novykh integriruemykh sluchaev na algebre Li $\mathrm{so}(4)$, Dis. ... kand. fiz.-matem. nauk, M., 2004

[8] H. R. Dullin, V. S. Matveev, “A new integrable system on the sphere”, Math. Res. Lett., 11:5–6 (2004), 715–722 | MR | Zbl

[9] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, M., Faktorial; Izhevsk, Izd-vo UGU, 1995 | MR | Zbl

[10] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela, RKhD, Izhevsk, 2001 | MR | Zbl

[11] A. Weinstein, “Symplectic geometry”, Bull. Amer. Math. Soc. (N.S.), 5:1 (1981), 1–13 | DOI | MR | Zbl

[12] A. T. Fomenko, Kh. Tsishang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl | Zbl

[13] A. T. Fomenko, H. Zieschang, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:3 (1987), 529–534 | MR | Zbl

[14] A. T. Fomenko, Kh. Tsishang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl | Zbl

[15] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl

[16] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[17] S. V. Matveev, A. T. Fomenko, “Morse-type theory for integrable Hamiltonian systems with tame integrals”, Math. Notes, 43:5 (1988), 382–386 | DOI | MR | Zbl | Zbl

[18] S. V. Matveev, A. T. Fomenko, “Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems”, Math. USSR-Sb., 63:2 (1989), 319–336 | DOI | MR | Zbl

[19] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl

[20] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[21] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[22] A. V. Tsiganov, “On a family of integrable systems on a sphere possessing a cubic integral of motion”, Soviet Math. Dokl., 71:3 (2005), 413–415 | MR | MR

[23] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl

[24] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl | Zbl