@article{SM_2008_199_3_a4,
author = {A. Yu. Moskvin},
title = {Topology of the {Liouville} foliation on a~2-sphere in the {Dullin-Matveev} integrable case},
journal = {Sbornik. Mathematics},
pages = {411--448},
year = {2008},
volume = {199},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_3_a4/}
}
A. Yu. Moskvin. Topology of the Liouville foliation on a 2-sphere in the Dullin-Matveev integrable case. Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 411-448. http://geodesic.mathdoc.fr/item/SM_2008_199_3_a4/
[1] A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russian Math. Surveys, 50:3 (1995), 473–501 | DOI | MR | Zbl
[2] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl | Zbl
[3] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[4] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR
[5] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | MR | Zbl
[6] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | MR | Zbl
[7] G. Khagigatdust, Topologiya sloenii Liuvillya dlya novykh integriruemykh sluchaev na algebre Li $\mathrm{so}(4)$, Dis. ... kand. fiz.-matem. nauk, M., 2004
[8] H. R. Dullin, V. S. Matveev, “A new integrable system on the sphere”, Math. Res. Lett., 11:5–6 (2004), 715–722 | MR | Zbl
[9] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, M., Faktorial; Izhevsk, Izd-vo UGU, 1995 | MR | Zbl
[10] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela, RKhD, Izhevsk, 2001 | MR | Zbl
[11] A. Weinstein, “Symplectic geometry”, Bull. Amer. Math. Soc. (N.S.), 5:1 (1981), 1–13 | DOI | MR | Zbl
[12] A. T. Fomenko, Kh. Tsishang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl | Zbl
[13] A. T. Fomenko, H. Zieschang, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:3 (1987), 529–534 | MR | Zbl
[14] A. T. Fomenko, Kh. Tsishang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl | Zbl
[15] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl
[16] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl
[17] S. V. Matveev, A. T. Fomenko, “Morse-type theory for integrable Hamiltonian systems with tame integrals”, Math. Notes, 43:5 (1988), 382–386 | DOI | MR | Zbl | Zbl
[18] S. V. Matveev, A. T. Fomenko, “Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems”, Math. USSR-Sb., 63:2 (1989), 319–336 | DOI | MR | Zbl
[19] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl
[20] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[21] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[22] A. V. Tsiganov, “On a family of integrable systems on a sphere possessing a cubic integral of motion”, Soviet Math. Dokl., 71:3 (2005), 413–415 | MR | MR
[23] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[24] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl | Zbl