Classification of a class of minimal
Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 385-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A full local classification and a geometric description of normally flat minimal semi-Einstein submanifolds of Euclidean spaces having multiple principal curvature vectors and an integrable conullity distribution are presented. Bibliography: 30 titles.
@article{SM_2008_199_3_a3,
     author = {V. A. Mirzoyan},
     title = {Classification of a~class of minimal},
     journal = {Sbornik. Mathematics},
     pages = {385--409},
     year = {2008},
     volume = {199},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_3_a3/}
}
TY  - JOUR
AU  - V. A. Mirzoyan
TI  - Classification of a class of minimal
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 385
EP  - 409
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_3_a3/
LA  - en
ID  - SM_2008_199_3_a3
ER  - 
%0 Journal Article
%A V. A. Mirzoyan
%T Classification of a class of minimal
%J Sbornik. Mathematics
%D 2008
%P 385-409
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2008_199_3_a3/
%G en
%F SM_2008_199_3_a3
V. A. Mirzoyan. Classification of a class of minimal. Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 385-409. http://geodesic.mathdoc.fr/item/SM_2008_199_3_a3/

[1] V. A. Mirzoyan, “Ric-semisymmetric submanifolds”, J. Math. Sci., 70:2 (1994), 1624–1646 | DOI | MR | Zbl

[2] V. A. Mirzoyan, “Structure theorems for Riemannian Ricci semi-symmetric spaces”, Russian Math. (Iz. VUZ), 36:6 (1992), 75–83 | MR | MR | Zbl

[3] V. A. Mirzoyan, “Cones over Einstein spaces”, J. Contemp. Math. Anal., 33:5 (1998), 40–46 | MR | Zbl

[4] V. A. Mirzoyan, “Warped products, cones over Einstein spaces, and classification of Ric-semiparallel submanifolds of a certain class”, Izv. Math., 67:5 (2003), 955–973 | DOI | MR | Zbl

[5] E. Voeskkh, O. Kowalski, L. Vanhecke, Riemannian manifolds of conullity two, World Sci. Publ., Singapore–River Edge, NJ, 1996 | MR | Zbl

[6] V. A. Mirzoyan, “Classification of Ric-semiparallel hypersurfaces in Euclidean spaces”, Sb. Math., 191:9 (2000), 1323–1338 | DOI | MR | Zbl

[7] F. Defever, “Ricci-semisymmetric hypersurfaces”, Balkan J. Geom. Appl., 5:1 (2000), 81–91 | MR | Zbl

[8] Yu. G. Lumiste, “Semisymmetric submanifolds”, J. Math. Sci., 70:2 (1994), 1609–1623 | DOI | MR | Zbl | Zbl

[9] F. Dillen, S. Nölker, “Semi-parallelity, multi-rotation surfaces and the helix-property”, J. Reine Angew. Math., 435 (1993), 33–63 | MR | Zbl

[10] S. Nölker, “Isometric immersions of warped products”, Differential Geom. Appl., 6:1 (1996), 1–30 | DOI | MR | Zbl

[11] Ü. Lumiste, “Semi-parallel submanifolds as some immersed fibre bundles with flat connections”, Geometry and topology of submanifolds, VIII, Proceedings of the international meeting on geometry of submanifolds (Brussels, Belgium and Nordfjordeid, Norway, 1995), World Sci. Publ., Singapore–River Edge, NJ, 1996, 236–244 | MR | Zbl

[12] D. Perrone, “Contact Riemannian manifolds satisfying $R(X,\xi)\cdot R=0$”, Yokohama Math. J., 39:2 (1992), 141–149 | MR | Zbl

[13] B. J. Papantoniou, “Contact Riemannian manifolds satisfying $R(X,\xi)\cdot R=0$ and $\xi\in(k,\mu)$-nullity distribution”, Yokohama Math. J., 40:2 (1993), 149–161 | MR | Zbl

[14] F. Defever, R. Deszcz, L. Verstraelen, “On pseudosymmetric para-Kähler manifolds”, Colloq. Math., 74:2 (1997), 253–260 | MR | Zbl

[15] M. Da̧browska, F. Defever, R. Deszcz, D. Kowalczyk, “Semisymmetry and Ricci-semisymmetry for hypersurfaces of semi-Euclidean spaces”, Publ. Inst. Math. (Beograd) (N.S.), 67 (2000), 103–111 | MR | Zbl

[16] Ü. Lumiste, “Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds”, Comment. Math. Univ. Carolin., 43:2 (2002), 243–260 | MR | Zbl

[17] Ü. Lumiste, “Semiparallel isometric immersions of 3-dimensional semisymmetric Riemannian manifolds”, Czechoslovak Math. J., 53:3 (2003), 707–734 | DOI | MR | Zbl

[18] M. M. Tripathi, J.-S. Kim, “On the concircular curvature tensor of a $(\kappa,\mu)$-manifold”, Balkan J. Geom. Appl., 9:1 (2004), 104–114 | MR | Zbl

[19] P. K. Raschewski, Riemannsche Geometrie und Tensoranalysis, VEB Deutscher, Berlin, 1959 | MR | MR | Zbl | Zbl

[20] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1992 | MR | MR | Zbl | Zbl

[21] M. M. Postnikov, Geometry VI. Riemannian geometry, Encyclopaedia Math. Sci., 91, Springer-Verlag, Berlin, 2001 | MR | Zbl

[22] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. II, Intersci. Publ., New York–London–Sydney, 1969 | MR | MR | Zbl | Zbl

[23] B. Chen, Geometry of submanifolds, Pure Appl. Math., 22, Marcel Dekker, New York, 1973 | MR | Zbl

[24] S. S. Chern, W. H. Chen, K. S. Lam, Lectures on differential geometry, Ser. Univ. Math., 1, World Sci. Publ., Singapore–River Edge, NJ, 1999 | MR | Zbl

[25] A. T. Fomenko, Variatsionnye metody v topologii, Nauka, M., 1982 | MR | Zbl

[26] Dào Trong Thi, A. T. Fomenko, Minimal surfaces, stratified multivarifolds, and the Plateau problem, Transl. Math. Monogr., 84, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[27] Sh.-Sh. Chern, N. H. Kuiper, “Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space”, Ann. of Math. (2), 56:3 (1952), 422–430 | DOI | MR | Zbl

[28] V. A. Mirzoyan, “Structure theorems for Ricci-semisymmetric submanifolds and geometric description of a class of minimal semi-Einstein submanifolds”, Sb. Math., 197:7 (2006), 997–1024 | DOI | MR

[29] V. A. Mirzoyan, “Submanifolds with commuting normal vector field”, J. Soviet Math., 28:2 (1985), 192–207 | DOI | MR | Zbl | Zbl

[30] J. D. Moore, “Isometric immersions of Riemannian products”, J. Differential Geometry, 5 (1971), 159–168 | MR | Zbl