@article{SM_2008_199_3_a2,
author = {A. M. Meirmanov},
title = {Acoustic and filtration properties of a~thermoelastic porous medium: {Biot's} equations of thermo-poroelasticity},
journal = {Sbornik. Mathematics},
pages = {361--384},
year = {2008},
volume = {199},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_3_a2/}
}
TY - JOUR AU - A. M. Meirmanov TI - Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity JO - Sbornik. Mathematics PY - 2008 SP - 361 EP - 384 VL - 199 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2008_199_3_a2/ LA - en ID - SM_2008_199_3_a2 ER -
A. M. Meirmanov. Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity. Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 361-384. http://geodesic.mathdoc.fr/item/SM_2008_199_3_a2/
[1] A. M. Meirmanov, S. A. Sazhenkov, “Generalized solutions to linearized equations of thermoelastic solid and viscous thermofluid”, Electron. J. Differential Equations, 2007, no. 41, 1–29 | MR | Zbl
[2] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[3] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[4] V. V. Zhikov, “Connectedness and homogenization. Examples of fractal conductivity”, Sb. Math., 187:8 (1996), 1109–1147 | DOI | MR | Zbl
[5] V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sb. Math., 191:7 (2000), 973–1014 | DOI | MR | Zbl
[6] V. V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. Math., 66:2 (2002), 299–365 | DOI | MR | Zbl
[7] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Amer., 70:4 (1981), 1140–1146 | DOI | Zbl
[8] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | MR | Zbl
[9] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21:6 (1990), 1394–1414 | DOI | MR | Zbl
[10] R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed: Part I”, Nonlinear Anal., 40:1–8 (2000), 185–212 | DOI | MR | Zbl
[11] Th. Clopeau, J. L. Ferrín, R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed, part II”, Math. Comput. Modelling, 33:8–9 (2001), 821–841 | DOI | MR | Zbl
[12] J. L. Ferrin, A. Mikelić, “Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluid”, Math. Methods Appl. Sci., 26:10 (2003), 831–859 | DOI | MR | Zbl
[13] A. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Math. J., 48:3 (2007), 519–538 | DOI | MR
[14] E. Acerbi, V. Chiadó Piat, G. Dal Maso, D. Percivale, “An extension theorem from connected sets, and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496 | DOI | MR | Zbl
[15] V. V. Jikov, S. M. Kozlov, O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994 | MR | MR | Zbl | Zbl
[16] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London–Paris, 1969 | MR | MR | Zbl | Zbl