Variation of Mumford quotients by torus actions on full
Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 341-359
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues the study of the variation of the Mumford quotient by the action of a maximal torus $T$ on a flag variety $G/B$ in terms of its dependence on the projective embedding $G/B\hookrightarrow\mathbb P(V(\chi))$. In the case when $G$ is of type $A_l$, the Picard group of the quotient $(G/B)^{ss}/\!/T$ is calculated under the assumption that the $T$-linearization comes from the standard $G$-linearization. Bibliography : 12 titles.
@article{SM_2008_199_3_a1,
     author = {V. S. Zhgoon},
     title = {Variation of {Mumford} quotients by~torus actions on full},
     journal = {Sbornik. Mathematics},
     pages = {341--359},
     year = {2008},
     volume = {199},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_3_a1/}
}
TY  - JOUR
AU  - V. S. Zhgoon
TI  - Variation of Mumford quotients by torus actions on full
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 341
EP  - 359
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_3_a1/
LA  - en
ID  - SM_2008_199_3_a1
ER  - 
%0 Journal Article
%A V. S. Zhgoon
%T Variation of Mumford quotients by torus actions on full
%J Sbornik. Mathematics
%D 2008
%P 341-359
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2008_199_3_a1/
%G en
%F SM_2008_199_3_a1
V. S. Zhgoon. Variation of Mumford quotients by torus actions on full. Sbornik. Mathematics, Tome 199 (2008) no. 3, pp. 341-359. http://geodesic.mathdoc.fr/item/SM_2008_199_3_a1/

[1] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl

[2] Zh. Dëdonne, Dzh. Kerrol, D. Mamford, Geometricheskaya teoriya invariantov, Mir, M., 1974 ; J. A. Dieudonné, J. B. Carrell, Invariant theory, old and new, Academic Press, New York–London, 1971 ; D. Mumford, Geometric invariant theory, Ergeb. Math. Grenzgeb., 34, Springer-Verlag, Berlin–Heidelberg–New York, 1965 | MR | Zbl | MR | Zbl | MR | Zbl

[3] V. S. Zhgoon, “Variation of Mumford quotients by torus actions on full flag varieties. I”, Izv. Math., 71:6 (2007), 1105–1122 | DOI | MR | Zbl

[4] J. B. Carrell, A. Kurth, “Normality of torus orbit closures in $G/P$”, J. Algebra, 233:1 (2000), 122–134 | DOI | MR | Zbl

[5] R. Dabrowski, “On normality of the closure of a generic torus orbit in $G/P$”, Pacific J. Math., 172:2 (1996), 321–330 | MR | Zbl

[6] S. S. Kannan, “Torus quotients of homogeneous spaces. II”, Proc. Indian Acad. Sci. Math. Sci., 109:1 (1999), 23–39 | DOI | MR | Zbl

[7] R. F. Goldin, “The cohomology ring of weight varieties and polygon spaces”, Adv. Math., 160:2 (2001), 175–204 | DOI | MR | Zbl

[8] R. F. Goldin, A.-L. Mare, “Cohomology of symplectic reductions of generic coadjoint orbits”, Proc. Amer. Math. Soc., 132:10 (2004), 3069–3074 | DOI | MR | Zbl

[9] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, “Schubert cells and cohomology of the spaces $G/P$”, Russian Math. Surveys, 28:3 (1973), 1–26 | DOI | MR | Zbl | Zbl

[10] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl

[11] F. Knop, H. Kraft, Th. Vust, “The Picard group of a $G$-variety”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuzer, Basel, 1989, 77–87 | MR | Zbl

[12] J. E. Humphreys, Linear algebraic groups, Grad. Texts in Math., 21, Springer-Verlag, New York–Heidelberg–Berlin, 1975 | MR | MR | Zbl | Zbl