@article{SM_2008_199_2_a7,
author = {A. A. Yakovlev},
title = {Adiabatic limits on {Riemannian} {Heisenberg} manifolds},
journal = {Sbornik. Mathematics},
pages = {307--318},
year = {2008},
volume = {199},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a7/}
}
A. A. Yakovlev. Adiabatic limits on Riemannian Heisenberg manifolds. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 307-318. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a7/
[1] E. Witten, “Global gravitational anomalies”, Comm. Math. Phys., 100:2 (1985), 197–229 | DOI | MR | Zbl
[2] J.-M. Bismut, D. S. Freed, “The analysis of elliptic families. II. Dirac operators, Êta invariants, and the holonomy theorem”, Comm. Math. Phys., 107:1 (1986), 103–163 | DOI | MR | Zbl
[3] J. Cheeger, “$\eta$-invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation”, J. Differential Geom., 26:1 (1987), 175–221 | MR | Zbl
[4] J.-M. Bismut, J. Cheeger, “$\eta$-invariants and their adiabatic limits”, J. Amer. Math. Soc., 2:1 (1989), 33–70 | DOI | MR | Zbl
[5] B. Colbois, G. Courtois, “Petites valeurs propres et classe d'Euler des $S^1$-fibrés”, Ann. Sci. École Norm. Sup. (4), 33:5 (2000), 611–645 | MR | Zbl
[6] X. Dai, “Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence”, J. Amer. Math. Soc., 4:2 (1991), 265–321 | DOI | MR | Zbl
[7] X. Dai, “APS boundary conditions, eta invariants and adiabatic limits”, Trans. Amer. Math. Soc., 354:1 (2002), 107–122 | DOI | MR | Zbl
[8] R. R. Mazzeo, R. B. Melrose, “The adiabatic limit, Hodge cohomology and Leray's spectral sequence for a fibration”, J. Differential Geom., 31:1 (1990), 185–213 | MR | Zbl
[9] P. Jammes, “Sur le spectre des fibrés en tore qui s'effondrent”, Manuscripta Math., 110:1 (2003), 13–31 | DOI | MR | Zbl
[10] P. Jammes, Effondrement, spectre et proriétés diophantiennes des flots riemanniens, , 2005 arXiv: math.DG/0505417
[11] J.-M. Bismut, “Local index theory and higher analytic torsion”, Doc. Math., Extra vol. I, Proceedings of the International Congress of Mathematicians (Berlin, 1998), 1998, 143–162 | MR | Zbl
[12] R. Forman, “Spectral sequences and adiabatic limits”, Comm. Math. Phys., 168:1 (1995), 57–116 | DOI | MR | Zbl
[13] J. A. Álvarez López, Y. A. Kordyukov, “Adiabatic limits and spectral sequences for Riemannian foliations”, Geom. Funct. Anal., 10:5 (2000), 977–1027 | DOI | MR | Zbl
[14] Yu. A. Kordyukov, “Adiabatic limits and spectral geometry of foliations”, Math. Ann., 313:4 (1999), 763–783 | DOI | MR | Zbl
[15] Yu. A. Kordyukov, A. A. Yakovlev, “Adiabatic limits and the spectrum of the Laplacian on foliated manifolds”, Proceedings of the Conference "$C^*$-algebras and elliptic theory. II" (Bedlewo, Poland, 2006), Birkhäuzer, Basel, 2008, 123–144, arXiv: math/0703785
[16] J. Roe, Elliptic operators, topology and asymptotic methods, Pitman Res. Notes Math. Ser., 395, Longman, Harlow, 1998 | MR | Zbl
[17] C. S. Gordon, E. N. Wilson, “The spectrum of the Laplacian on Riemannian Heisenberg manifolds”, Michigan Math. J., 33:2 (1986), 253–271 | DOI | MR | Zbl
[18] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts Monogr. Phys., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl
[19] E. Getzler, “A short proof of the local Atiyah–Singer index theorem”, Topology, 25:1 (1986), 111–117 | DOI | MR | Zbl
[20] K. Furutani, “The heat kernel and the spectrum of a class of nilmanifolds”, Comm. Partial Differential Equations, 21:3–4 (1996), 423–438 | DOI | MR | Zbl
[21] H. Donnelly, “Asymptotic expansions for the compact quotients of properly discontinuous group actions”, Illinois J. Math., 23:3 (1979), 485–496 | MR | Zbl