Adiabatic limits on Riemannian Heisenberg manifolds
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 307-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.
Mots-clés : foliation.
@article{SM_2008_199_2_a7,
     author = {A. A. Yakovlev},
     title = {Adiabatic limits on {Riemannian} {Heisenberg} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {307--318},
     year = {2008},
     volume = {199},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a7/}
}
TY  - JOUR
AU  - A. A. Yakovlev
TI  - Adiabatic limits on Riemannian Heisenberg manifolds
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 307
EP  - 318
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a7/
LA  - en
ID  - SM_2008_199_2_a7
ER  - 
%0 Journal Article
%A A. A. Yakovlev
%T Adiabatic limits on Riemannian Heisenberg manifolds
%J Sbornik. Mathematics
%D 2008
%P 307-318
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a7/
%G en
%F SM_2008_199_2_a7
A. A. Yakovlev. Adiabatic limits on Riemannian Heisenberg manifolds. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 307-318. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a7/

[1] E. Witten, “Global gravitational anomalies”, Comm. Math. Phys., 100:2 (1985), 197–229 | DOI | MR | Zbl

[2] J.-M. Bismut, D. S. Freed, “The analysis of elliptic families. II. Dirac operators, Êta invariants, and the holonomy theorem”, Comm. Math. Phys., 107:1 (1986), 103–163 | DOI | MR | Zbl

[3] J. Cheeger, “$\eta$-invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation”, J. Differential Geom., 26:1 (1987), 175–221 | MR | Zbl

[4] J.-M. Bismut, J. Cheeger, “$\eta$-invariants and their adiabatic limits”, J. Amer. Math. Soc., 2:1 (1989), 33–70 | DOI | MR | Zbl

[5] B. Colbois, G. Courtois, “Petites valeurs propres et classe d'Euler des $S^1$-fibrés”, Ann. Sci. École Norm. Sup. (4), 33:5 (2000), 611–645 | MR | Zbl

[6] X. Dai, “Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence”, J. Amer. Math. Soc., 4:2 (1991), 265–321 | DOI | MR | Zbl

[7] X. Dai, “APS boundary conditions, eta invariants and adiabatic limits”, Trans. Amer. Math. Soc., 354:1 (2002), 107–122 | DOI | MR | Zbl

[8] R. R. Mazzeo, R. B. Melrose, “The adiabatic limit, Hodge cohomology and Leray's spectral sequence for a fibration”, J. Differential Geom., 31:1 (1990), 185–213 | MR | Zbl

[9] P. Jammes, “Sur le spectre des fibrés en tore qui s'effondrent”, Manuscripta Math., 110:1 (2003), 13–31 | DOI | MR | Zbl

[10] P. Jammes, Effondrement, spectre et proriétés diophantiennes des flots riemanniens, , 2005 arXiv: math.DG/0505417

[11] J.-M. Bismut, “Local index theory and higher analytic torsion”, Doc. Math., Extra vol. I, Proceedings of the International Congress of Mathematicians (Berlin, 1998), 1998, 143–162 | MR | Zbl

[12] R. Forman, “Spectral sequences and adiabatic limits”, Comm. Math. Phys., 168:1 (1995), 57–116 | DOI | MR | Zbl

[13] J. A. Álvarez López, Y. A. Kordyukov, “Adiabatic limits and spectral sequences for Riemannian foliations”, Geom. Funct. Anal., 10:5 (2000), 977–1027 | DOI | MR | Zbl

[14] Yu. A. Kordyukov, “Adiabatic limits and spectral geometry of foliations”, Math. Ann., 313:4 (1999), 763–783 | DOI | MR | Zbl

[15] Yu. A. Kordyukov, A. A. Yakovlev, “Adiabatic limits and the spectrum of the Laplacian on foliated manifolds”, Proceedings of the Conference "$C^*$-algebras and elliptic theory. II" (Bedlewo, Poland, 2006), Birkhäuzer, Basel, 2008, 123–144, arXiv: math/0703785

[16] J. Roe, Elliptic operators, topology and asymptotic methods, Pitman Res. Notes Math. Ser., 395, Longman, Harlow, 1998 | MR | Zbl

[17] C. S. Gordon, E. N. Wilson, “The spectrum of the Laplacian on Riemannian Heisenberg manifolds”, Michigan Math. J., 33:2 (1986), 253–271 | DOI | MR | Zbl

[18] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts Monogr. Phys., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl

[19] E. Getzler, “A short proof of the local Atiyah–Singer index theorem”, Topology, 25:1 (1986), 111–117 | DOI | MR | Zbl

[20] K. Furutani, “The heat kernel and the spectrum of a class of nilmanifolds”, Comm. Partial Differential Equations, 21:3–4 (1996), 423–438 | DOI | MR | Zbl

[21] H. Donnelly, “Asymptotic expansions for the compact quotients of properly discontinuous group actions”, Illinois J. Math., 23:3 (1979), 485–496 | MR | Zbl