Double spaces with isolated singularities
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 291-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The non-rationality is proved for double covers of $\mathbb P^n$ branched over a hypersurface $F\subset\mathbb P^n$ of degree $2n\geqslant8$ with isolated singularities such that the multiplicity of each singular point of $F$ does not exceed $2(n-2)$ and the projectivization of its tangent cone is smooth. Bibliography: 15 titles.
@article{SM_2008_199_2_a6,
     author = {I. A. Cheltsov},
     title = {Double spaces with isolated singularities},
     journal = {Sbornik. Mathematics},
     pages = {291--306},
     year = {2008},
     volume = {199},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a6/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Double spaces with isolated singularities
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 291
EP  - 306
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a6/
LA  - en
ID  - SM_2008_199_2_a6
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Double spaces with isolated singularities
%J Sbornik. Mathematics
%D 2008
%P 291-306
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a6/
%G en
%F SM_2008_199_2_a6
I. A. Cheltsov. Double spaces with isolated singularities. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 291-306. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a6/

[1] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996 | MR | Zbl

[2] A. V. Pukhlikov, “Birational automorphisms of double spaces with singularities”, J. Math. Sci. (New York), 85:4 (1997), 2128–2141 | DOI | MR | Zbl

[3] I. Cheltsov, J. Park, Sextic double solids, arXiv: math/0404452 | MR

[4] A. N. Varchenko, “On semicontinuity of the spectrum and an upper estimate for the number of singular points of a projective hypersurface”, Soviet Math. Dokl., 27:3 (1983), 735–739 | MR | Zbl

[5] W. Barth, “Two projective surfaces with many nodes, admitting the symmetries of the icosahedron”, J. Algebraic Geom., 5:1 (1996), 173–186 | MR | Zbl

[6] D. B. Jaffe, D. Ruberman, “A sextic surface cannot have 66 nodes”, J. Algebraic Geom., 6:1 (1997), 151–168 | MR | Zbl

[7] S. Endraß, “On the divisor class group of double solids”, Manuscripta Math., 99:3 (1999), 341–358 | DOI | MR | Zbl

[8] I. V. Dolgachev, “O ratsionalnykh poverkhnostyakh s puchkom ellipticheskikh krivykh”, Izv. AN SSSR. Ser. matem., 30 (1966), 1073–1100 | MR | Zbl

[9] J. Kollár (ed.), Flips and abundance for algebraic threefolds, Papers from the Second Summer Seminar on Algebraic Geometry (University of Utah, Salt Lake City, UT, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR | Zbl

[10] I. Cheltsov, “Log models of birationally rigid varieties”, J. Math. Sci. (New York), 102:2 (2000), 3843–3875 | DOI | MR | Zbl

[11] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl

[12] A. V. Pukhlikov, “A remark on the theorem on a three-dimensional quartic”, Proc. Steklov Inst. Math., 208 (1995), 244–254 | MR | Zbl

[13] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl

[14] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl

[15] O. Zariski, “Complete linear systems on normal varieties and a generalization of a lemma of Enriques-Severi”, Ann. of Math. (2), 55:3 (1952), 552–592 | DOI | MR | Zbl