@article{SM_2008_199_2_a5,
author = {M. S. Sgibnev},
title = {Semimultiplicative moments of factors in {Wiener{\textendash}Hopf} matrix factorization},
journal = {Sbornik. Mathematics},
pages = {277--290},
year = {2008},
volume = {199},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a5/}
}
M. S. Sgibnev. Semimultiplicative moments of factors in Wiener–Hopf matrix factorization. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 277-290. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a5/
[1] R. A. Horn, Ch. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985 | MR | MR | Zbl | Zbl
[2] S. Asmussen, “Aspects of matrix Wiener–Hopf factorisation in applied probability”, Math. Sci., 14:2 (1989), 101–116 | MR | Zbl
[3] M. S. Sgibnev, “The matrix analogue of the Blackwell renewal theorem on the real line”, Sb. Math., 197:3 (2006), 369–386 | DOI | MR
[4] Y. S. Chow, T. L. Lai, “Moments of ladder variables for driftless random walks”, Z. Wahrsch. Verw. Gebiete, 48:3 (1979), 253–257 | DOI | MR | Zbl
[5] R. A. Doney, “Moments of ladder heights in random walks”, J. Appl. Probab., 17:1 (1980), 248–252 | DOI | MR | Zbl
[6] È. L. Presman, “Factorization methods and boundary problems for sums of random variables given on Markov chains”, Math. USSR-Izv., 3:4 (1969), 815–852 | DOI | MR | Zbl | Zbl
[7] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR | MR | Zbl
[8] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1967 ; W. Feller, An introduction to probability theory and its applications, vol. II, Wiley, New York–London–Sydney, 1966 | MR | Zbl | MR | Zbl
[9] M. S. Sgibnev, “Submultiplicative moments of the supremum of a random walk with negative drift”, Statist. Probab. Lett., 32:4 (1997), 377–383 | DOI | MR | Zbl
[10] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | DOI | MR | MR | Zbl | Zbl