Best approximations and widths of classes of periodic functions of several variables
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 253-275
Voir la notice de l'article provenant de la source Math-Net.Ru
Order estimates are obtained for the best approximations of the Besov classes $B_{p,\theta}^r$ of periodic functions of several variables in the spaces $L_1$ and $L_\infty$ by trigonometric polynomials whose harmonic indices lie in step hyperbolic crosses. The orders of the orthoprojection widths of the classes
$B_{p,\theta}^r$ and the linear widths of the classes $B_{p,\theta}^r$ and $W_{p,\alpha}^r$ in the space $L_1$ are found.
Bibliography: 22 titles.
@article{SM_2008_199_2_a4,
author = {A. S. Romanyuk},
title = {Best approximations and widths of classes of periodic functions of several variables},
journal = {Sbornik. Mathematics},
pages = {253--275},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/}
}
A. S. Romanyuk. Best approximations and widths of classes of periodic functions of several variables. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 253-275. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/