Best approximations and widths of classes of periodic functions of several variables
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 253-275

Voir la notice de l'article provenant de la source Math-Net.Ru

Order estimates are obtained for the best approximations of the Besov classes $B_{p,\theta}^r$ of periodic functions of several variables in the spaces $L_1$ and $L_\infty$ by trigonometric polynomials whose harmonic indices lie in step hyperbolic crosses. The orders of the orthoprojection widths of the classes $B_{p,\theta}^r$ and the linear widths of the classes $B_{p,\theta}^r$ and $W_{p,\alpha}^r$ in the space $L_1$ are found. Bibliography: 22 titles.
@article{SM_2008_199_2_a4,
     author = {A. S. Romanyuk},
     title = {Best approximations and widths of classes of periodic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {253--275},
     publisher = {mathdoc},
     volume = {199},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Best approximations and widths of classes of periodic functions of several variables
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 253
EP  - 275
VL  - 199
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/
LA  - en
ID  - SM_2008_199_2_a4
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Best approximations and widths of classes of periodic functions of several variables
%J Sbornik. Mathematics
%D 2008
%P 253-275
%V 199
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/
%G en
%F SM_2008_199_2_a4
A. S. Romanyuk. Best approximations and widths of classes of periodic functions of several variables. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 253-275. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/