Best approximations and widths of classes of periodic functions of several variables
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 253-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Order estimates are obtained for the best approximations of the Besov classes $B_{p,\theta}^r$ of periodic functions of several variables in the spaces $L_1$ and $L_\infty$ by trigonometric polynomials whose harmonic indices lie in step hyperbolic crosses. The orders of the orthoprojection widths of the classes $B_{p,\theta}^r$ and the linear widths of the classes $B_{p,\theta}^r$ and $W_{p,\alpha}^r$ in the space $L_1$ are found. Bibliography: 22 titles.
@article{SM_2008_199_2_a4,
     author = {A. S. Romanyuk},
     title = {Best approximations and widths of classes of periodic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {253--275},
     year = {2008},
     volume = {199},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Best approximations and widths of classes of periodic functions of several variables
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 253
EP  - 275
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/
LA  - en
ID  - SM_2008_199_2_a4
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Best approximations and widths of classes of periodic functions of several variables
%J Sbornik. Mathematics
%D 2008
%P 253-275
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/
%G en
%F SM_2008_199_2_a4
A. S. Romanyuk. Best approximations and widths of classes of periodic functions of several variables. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 253-275. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a4/

[1] A. S. Romanyuk, “Approximation of the Besov classes of periodic functions of several variables in a space $L_q$”, Ukrainian Math. J., 43:10 (1991), 1297–1306 | DOI | MR | Zbl

[2] A. S. Romanyuk, “Best $M$-term trigonometric approximations of Besov classes of periodic functions of several variables”, Izv. Math., 67:2 (2003), 265–302 | DOI | MR | Zbl

[3] A. S. Romanyuk, “Approximability of the classes $B_{p,\theta}^r$ of periodic functions of several variables by linear methods and best approximations”, Sb. Math., 195:2 (2004), 237–261 | DOI | MR | Zbl

[4] A. S. Romanyuk, “Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes $B_{p,\theta}^r$”, Izv. Math., 70:2 (2006), 277–306 | DOI | MR | Zbl

[5] A. S. Romanyuk, “Kolmogorov and trigonometric widths of the Besov classes $B^r_{p,\theta}$ of multivariate periodic functions”, Sb. Math., 197:1 (2006), 69–93 | DOI | MR

[6] G. A. Akishev, “Approximation of function classes in spaces with mixed norm”, Sb. Math., 197:8 (2006), 1121–1144 | DOI | MR

[7] O. V. Besov, “O nekotorom semeistve funktsionalnykh prostranstv. Teoremy vlozheniya i prodolzheniya”, Dokl. AN SSSR, 126:6 (1959), 1163–1165 | MR | Zbl

[8] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl

[9] P. I. Lizorkin, S. M. Nikol'skiĭ, “Spaces of functions of mixed smoothness from the decomposition point of view”, Proc. Steklov Inst. Math., 187 (1990), 163–184 | MR | Zbl

[10] V. N. Temlyakov, “Estimates of the asymptotic characteristics of classes of functions with bounded mixed derivative or difference”, Proc. Steklov Inst. Math., 189 (1990), 161–197 | MR | Zbl

[11] V. N. Temlyakov, “Estimates of best bilinear approximations of periodic functions”, Proc. Steklov Inst. Math., 181 (1989), 275–293 | MR | Zbl | Zbl

[12] V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Science Publ., Commack, NY, 1993 | MR | Zbl

[13] É. M. Galeev, “Approximation of classes of periodic functions of several variables by nuclear operators”, Math. Notes, 47:3 (1990), 248–254 | DOI | MR | Zbl

[14] V. N. Temlyakov, Approximation of functions with bounded mixed derivative, Proc. Steklov Inst. Math., 178, Amer. Math. Soc., Providence, RI, 1989 | MR | MR | Zbl | Zbl

[15] E. M. Galeev, “Priblizhenie nekotorykh klassov periodicheskikh funktsii mnogikh peremennykh summami Fure v metrike $\widetilde{\mathscr L}_p$”, UMN, 32:4 (1977), 251–252 | MR | Zbl

[16] N. Korneĭchuk, Exact constants in approximation theory, Encyclopedia Math. Appl., 38, Cambridge Univ. Press, Cambridge, 1991 | MR | MR | Zbl | Zbl

[17] V. N. Temlyakov, “Poperechniki nekotorykh klassov funktsii neskolkikh peremennykh”, Dokl. AN SSSR, 267:2 (1982), 314–317 | MR

[18] É. M. Galeev, “Orders of the orthoprojection widths of classes of periodic functions of one and of several variables”, Math. Notes, 43:2 (1988), 110–118 | DOI | MR | Zbl | Zbl

[19] A. V. Andrianov, V. N. Temlyakov, “On two methods of generalization of properties of univariate function systems to their tensor product”, Proc. Steklov Inst. Math., 219 (1997), 25–35 | MR | Zbl

[20] V. M. Tikhomirov, “Diameters of sets in function spaces and the theory of best approximations”, Russian Math. Surveys, 15:3 (1960), 75–111 | DOI | MR | Zbl

[21] Eh. M. Galeev, “On linear diameters of classes of periodic functions of several variables”, Moscow Univ. Math. Bull., 42:4 (1987), 14–18 | MR | Zbl

[22] É. M. Galeev, “Linear widths of Hölder–Nikol'skii classes of periodic functions of several variables”, Math. Notes, 59:2 (1996), 133–140 | DOI | MR | Zbl