On non-trivial additive cocycles on the torus
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 229-251

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a family of functions $f$ with zero mean on a multidimensional torus possessing a very high degree of smoothness, such that the equation $$ w(x+\alpha)-w(x)=f(x) $$ has no measurable solutions $w$ for any badly approximable vector $\alpha$. For every vector $\alpha$ admitting an arbitrary prescribed degree of simultaneous Diophantine approximation we construct a cocycle of extremal smoothness that is asymptotically normal in the strong sense. Bibliography: 19 titles.
@article{SM_2008_199_2_a3,
     author = {A. V. Rozhdestvenskii},
     title = {On non-trivial additive cocycles on the torus},
     journal = {Sbornik. Mathematics},
     pages = {229--251},
     publisher = {mathdoc},
     volume = {199},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - On non-trivial additive cocycles on the torus
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 229
EP  - 251
VL  - 199
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/
LA  - en
ID  - SM_2008_199_2_a3
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T On non-trivial additive cocycles on the torus
%J Sbornik. Mathematics
%D 2008
%P 229-251
%V 199
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/
%G en
%F SM_2008_199_2_a3
A. V. Rozhdestvenskii. On non-trivial additive cocycles on the torus. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 229-251. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/