On non-trivial additive cocycles on the torus
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 229-251
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a family of functions $f$ with zero mean on a multidimensional torus possessing a very
high degree of smoothness, such that the equation
$$
w(x+\alpha)-w(x)=f(x)
$$
has no measurable solutions $w$ for any badly approximable vector $\alpha$. For every vector $\alpha$
admitting an arbitrary prescribed degree of simultaneous Diophantine approximation we construct a cocycle of extremal smoothness that is asymptotically normal in the strong sense.
Bibliography: 19 titles.
@article{SM_2008_199_2_a3,
author = {A. V. Rozhdestvenskii},
title = {On non-trivial additive cocycles on the torus},
journal = {Sbornik. Mathematics},
pages = {229--251},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/}
}
A. V. Rozhdestvenskii. On non-trivial additive cocycles on the torus. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 229-251. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/