On non-trivial additive cocycles on the torus
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 229-251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a family of functions $f$ with zero mean on a multidimensional torus possessing a very high degree of smoothness, such that the equation $$ w(x+\alpha)-w(x)=f(x) $$ has no measurable solutions $w$ for any badly approximable vector $\alpha$. For every vector $\alpha$ admitting an arbitrary prescribed degree of simultaneous Diophantine approximation we construct a cocycle of extremal smoothness that is asymptotically normal in the strong sense. Bibliography: 19 titles.
@article{SM_2008_199_2_a3,
     author = {A. V. Rozhdestvenskii},
     title = {On non-trivial additive cocycles on the torus},
     journal = {Sbornik. Mathematics},
     pages = {229--251},
     year = {2008},
     volume = {199},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/}
}
TY  - JOUR
AU  - A. V. Rozhdestvenskii
TI  - On non-trivial additive cocycles on the torus
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 229
EP  - 251
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/
LA  - en
ID  - SM_2008_199_2_a3
ER  - 
%0 Journal Article
%A A. V. Rozhdestvenskii
%T On non-trivial additive cocycles on the torus
%J Sbornik. Mathematics
%D 2008
%P 229-251
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/
%G en
%F SM_2008_199_2_a3
A. V. Rozhdestvenskii. On non-trivial additive cocycles on the torus. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 229-251. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a3/

[1] K. Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Math., 1, Macmillan, Delhi, 1977 | MR | Zbl

[2] D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Math. USSR-Izv., 7:6 (1973), 1257–1271 | DOI | MR | Zbl | Zbl

[3] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinaĭ, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[4] N. G. Moshchevitin, “Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems”, Math. Notes, 58:3 (1995), 948–959 | DOI | MR | Zbl

[5] A. V. Rozhdestvenskii, “On the additive cohomological equation and time change for a linear flow on the torus with a Diophantine frequency vector”, Sb. Math., 195:5 (2004), 723–764 | DOI | MR | Zbl

[6] A. V. Rozhdestvenskii, “On the coboundedness of functions on a torus”, Math. Notes, 55:6 (1994), 617–622 | DOI | MR | Zbl

[7] P. Liardet, D. Volný, “Sums of continuous and differentiable functions in dynamical systems”, Israel J. Math., 98 (1997), 29–60 | DOI | MR | Zbl

[8] A. Katok, E. A. Robinson, jr., “Cocycles, cohomology and combinatorial constructions in ergodic theory”, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001, 107–173 | MR | Zbl

[9] B. Fayad, A. Windsor, “A dichotomy between discrete and continuous spectrum for a class of special flows over rotations”, J. Mod. Dyn., 1:1 (2007), 107–122 | MR | Zbl

[10] A. Zygmund, Trigonometric series, vols. I, II, Cambridge Univ. Press, Cambridge–New York, 1959 | MR | MR | Zbl | Zbl

[11] A. V. Rozhdestvenskii, “On absolutely continuous weakly mixing cocycles over irrational rotations”, Sb. Math., 194:5 (2003), 775–792 | DOI | MR | Zbl

[12] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | MR | Zbl | Zbl

[13] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[14] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | MR | Zbl | Zbl

[15] W. Rudin, Fourier analysis on groups, Intersci. Publ., New York–London, 1962 | MR | Zbl

[16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl

[17] R. Salem, A. Zygmund, “On lacunary trigonometric series”, Proc. Nat. Acad. Sci. U.S.A., 33:11 (1947), 333–338 | DOI | MR | Zbl

[18] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Wiley, New York–London–Sydney, 1974 | MR | MR | Zbl | Zbl

[19] A. V. Rozhdestvenskii, “Ob additivnom kogomologicheskom uravnenii i tipichnom povedenii summ Birkgofa nad sdvigom mnogomernogo tora”, Dinamicheskie sistemy i optimizatsiya, Tr. MIAN, 256, Nauka, M., 2007, 278–289 | MR