Finding polynomials of best approximation with weight
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 207-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new iterative method for finding the parameters of polynomials of best approximation with weight in $C[-1,1]$ is presented. It is based on the representation of the error in the trigonometric form in terms of the phase function. The iterative method of finding the corrections to the phase functions that determine the joint motion of the zeros and the $e$-points of the error is based on inverse analysis, perturbation theory, and asymptotic formulae for extremal polynomials. Bibliography: 24 titles.
@article{SM_2008_199_2_a2,
     author = {V. I. Lebedev},
     title = {Finding polynomials of best approximation with weight},
     journal = {Sbornik. Mathematics},
     pages = {207--228},
     year = {2008},
     volume = {199},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a2/}
}
TY  - JOUR
AU  - V. I. Lebedev
TI  - Finding polynomials of best approximation with weight
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 207
EP  - 228
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a2/
LA  - en
ID  - SM_2008_199_2_a2
ER  - 
%0 Journal Article
%A V. I. Lebedev
%T Finding polynomials of best approximation with weight
%J Sbornik. Mathematics
%D 2008
%P 207-228
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a2/
%G en
%F SM_2008_199_2_a2
V. I. Lebedev. Finding polynomials of best approximation with weight. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 207-228. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a2/

[1] P. L. Chebyshev, “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Izbrannye trudy, Izd-vo AN SSSR, M., 1955, 611–648 | MR | Zbl

[2] P. L. Chebyshev, “Voprosy o naimenshikh velichinakh, svyazannykh s priblizhennym predstavleniem funktsii”, Izbrannye trudy, Izd-vo AN SSSR, M., 1955, 462–578 | MR | Zbl

[3] P. L. Chebyshev, “O funktsiyakh, malo udalyayuschikhsya ot nulya pri nekotorykh velichinakh peremennykh”, Izbrannye trudy, Izd-vo AN SSSR, M., 1955, 579–610 | MR | Zbl

[4] E. Ya. Remez, Osnovy chislennykh metodov chebyshevskogo priblizheniya, Naukova dumka, Kiev, 1969 | MR | Zbl

[5] I. S. Berezin, N. P. Zhidkov, Computing methods, vol. 1, Pergamon Press, Oxford–Edinburgh–New York–Paris–Frankfurt; Addison-Wesley, Reading, MA–London, 1965 | MR | MR | Zbl | Zbl

[6] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Fizmatlit, M.; Nev. Dialekt, Spb., 2000 | MR | Zbl

[7] V. I. Lebedev, “O nakhozhdenii mnogochlenov nailuchshego s vesom priblizheniya”, Tezisy dokladov III mezhdunarodnoi konferentsii “Matematicheskie idei P. L. Chebysheva i ikh prilozheniya k sovremennym problemam estestvoznaniya” (Obninsk, 2006), Izd-vo Obninskogo un-ta, Obninsk, 2006, 76–77

[8] V. I. Lebedev, “O metode nakhozhdeniya mnogochlenov nailuchshego s vesom priblizheniya”, Tr. matem. tsentra im. N. I. Lobachevskogo, 33 (2006), 3–18

[9] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl

[10] S. F. Pashkovskii, “O raspolozhenii $e$-tochek polinomov nailuchshego priblizheniya”, Dokl. AN SSSR, 117:4 (1957), 576–577

[11] M. I. Kadec, “On the distribution of points of maximum deviation in the approximation of continuous functions by polynomials”, Amer. Math. Soc. Transl. Ser. 2, 26 (1963), 231–234 | MR | MR | Zbl

[12] V. G. Verdiev, “Evolyutsiya nulei i tochek ekstremumov trigonometricheskogo mnogochlena pri izmenenii ego ekstremalnogo znacheniya”, Matem. zametki, 48:5 (1990), 143–146 | MR | Zbl

[13] S. N. Bernshtein, “Ob asimptoticheskom znachenii nailuchshego priblizheniya analiticheskikh funktsii”, Sobranie sochinenii, t. I. Konstruktivnaya teoriya funktsii (1905–1930), Izd-vo AN SSSR, M., 1952, 127–135 | MR | Zbl

[14] S. N. Bernshtein, “Ob odnom klasse ortogonalnykh mnogochlenov”, Sobranie sochinenii, t. I. Konstruktivnaya teoriya funktsii (1905–1930), Izd-vo AN SSSR, M., 1952, 452–465 | MR | Zbl

[15] S. N. Bernshtein, “O mnogochlenakh, ortogonalnykh na konechnom otrezke”, Sobranie sochinenii, t. II. Konstruktivnaya teoriya funktsii (1931–1953), Izd-vo AN SSSR, M., 1954, 7–106 | MR | Zbl

[16] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl

[17] E. Stiefel, “Methods – old and new – for solving the Tchebycheff approximation problem”, SIAM J. Numer. Anal., 1:1 (1964), 164–176 | DOI | MR | Zbl

[18] P. L. Chebyshev, “O funktsiyakh, malo udalyayuschikhsya ot nulya pri nekotorykh velichinakh peremennykh”, Polnoe sobranie sochinenii, t. 3, Izd-vo AN SSSR, M., L., 1948, 108–120 | MR | Zbl

[19] A. A. Markov, “Lektsii o funktsiyakh, naimenee uklonyayuschikhsya ot nulya”, Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, OGIZ, M., L., 1948, 244–291 | MR | Zbl

[20] V. I. Lebedev, “Extremal polynomials and methods of optimization of numerical algorithms”, Sb. Math., 195:10 (2004), 1413–1459 | DOI | MR | Zbl

[21] I. K. Lifanov, Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln, Yanus, M., 1995 | MR | Zbl

[22] V. I. Lebedev, “A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. I”, Russian J. Numer. Anal. Math. Modelling, 8:3 (1993), 195–222 | MR | Zbl

[23] V. I. Lebedev, “A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. II”, Russian J. Numer. Anal. Math. Modelling, 8:5 (1993), 397–426 | MR | Zbl

[24] E. Stiefel, “Phase methods for polynomial approximation”, Approximation of functions (Proc. Sympos. General Motors Res. Lab., Warren, MI, 1964), Elsevier, Amsterdam, 1965, 68–82 | MR | Zbl