@article{SM_2008_199_2_a2,
author = {V. I. Lebedev},
title = {Finding polynomials of best approximation with weight},
journal = {Sbornik. Mathematics},
pages = {207--228},
year = {2008},
volume = {199},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a2/}
}
V. I. Lebedev. Finding polynomials of best approximation with weight. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 207-228. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a2/
[1] P. L. Chebyshev, “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Izbrannye trudy, Izd-vo AN SSSR, M., 1955, 611–648 | MR | Zbl
[2] P. L. Chebyshev, “Voprosy o naimenshikh velichinakh, svyazannykh s priblizhennym predstavleniem funktsii”, Izbrannye trudy, Izd-vo AN SSSR, M., 1955, 462–578 | MR | Zbl
[3] P. L. Chebyshev, “O funktsiyakh, malo udalyayuschikhsya ot nulya pri nekotorykh velichinakh peremennykh”, Izbrannye trudy, Izd-vo AN SSSR, M., 1955, 579–610 | MR | Zbl
[4] E. Ya. Remez, Osnovy chislennykh metodov chebyshevskogo priblizheniya, Naukova dumka, Kiev, 1969 | MR | Zbl
[5] I. S. Berezin, N. P. Zhidkov, Computing methods, vol. 1, Pergamon Press, Oxford–Edinburgh–New York–Paris–Frankfurt; Addison-Wesley, Reading, MA–London, 1965 | MR | MR | Zbl | Zbl
[6] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Fizmatlit, M.; Nev. Dialekt, Spb., 2000 | MR | Zbl
[7] V. I. Lebedev, “O nakhozhdenii mnogochlenov nailuchshego s vesom priblizheniya”, Tezisy dokladov III mezhdunarodnoi konferentsii “Matematicheskie idei P. L. Chebysheva i ikh prilozheniya k sovremennym problemam estestvoznaniya” (Obninsk, 2006), Izd-vo Obninskogo un-ta, Obninsk, 2006, 76–77
[8] V. I. Lebedev, “O metode nakhozhdeniya mnogochlenov nailuchshego s vesom priblizheniya”, Tr. matem. tsentra im. N. I. Lobachevskogo, 33 (2006), 3–18
[9] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl
[10] S. F. Pashkovskii, “O raspolozhenii $e$-tochek polinomov nailuchshego priblizheniya”, Dokl. AN SSSR, 117:4 (1957), 576–577
[11] M. I. Kadec, “On the distribution of points of maximum deviation in the approximation of continuous functions by polynomials”, Amer. Math. Soc. Transl. Ser. 2, 26 (1963), 231–234 | MR | MR | Zbl
[12] V. G. Verdiev, “Evolyutsiya nulei i tochek ekstremumov trigonometricheskogo mnogochlena pri izmenenii ego ekstremalnogo znacheniya”, Matem. zametki, 48:5 (1990), 143–146 | MR | Zbl
[13] S. N. Bernshtein, “Ob asimptoticheskom znachenii nailuchshego priblizheniya analiticheskikh funktsii”, Sobranie sochinenii, t. I. Konstruktivnaya teoriya funktsii (1905–1930), Izd-vo AN SSSR, M., 1952, 127–135 | MR | Zbl
[14] S. N. Bernshtein, “Ob odnom klasse ortogonalnykh mnogochlenov”, Sobranie sochinenii, t. I. Konstruktivnaya teoriya funktsii (1905–1930), Izd-vo AN SSSR, M., 1952, 452–465 | MR | Zbl
[15] S. N. Bernshtein, “O mnogochlenakh, ortogonalnykh na konechnom otrezke”, Sobranie sochinenii, t. II. Konstruktivnaya teoriya funktsii (1931–1953), Izd-vo AN SSSR, M., 1954, 7–106 | MR | Zbl
[16] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl
[17] E. Stiefel, “Methods – old and new – for solving the Tchebycheff approximation problem”, SIAM J. Numer. Anal., 1:1 (1964), 164–176 | DOI | MR | Zbl
[18] P. L. Chebyshev, “O funktsiyakh, malo udalyayuschikhsya ot nulya pri nekotorykh velichinakh peremennykh”, Polnoe sobranie sochinenii, t. 3, Izd-vo AN SSSR, M., L., 1948, 108–120 | MR | Zbl
[19] A. A. Markov, “Lektsii o funktsiyakh, naimenee uklonyayuschikhsya ot nulya”, Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, OGIZ, M., L., 1948, 244–291 | MR | Zbl
[20] V. I. Lebedev, “Extremal polynomials and methods of optimization of numerical algorithms”, Sb. Math., 195:10 (2004), 1413–1459 | DOI | MR | Zbl
[21] I. K. Lifanov, Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln, Yanus, M., 1995 | MR | Zbl
[22] V. I. Lebedev, “A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. I”, Russian J. Numer. Anal. Math. Modelling, 8:3 (1993), 195–222 | MR | Zbl
[23] V. I. Lebedev, “A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. II”, Russian J. Numer. Anal. Math. Modelling, 8:5 (1993), 397–426 | MR | Zbl
[24] E. Stiefel, “Phase methods for polynomial approximation”, Approximation of functions (Proc. Sympos. General Motors Res. Lab., Warren, MI, 1964), Elsevier, Amsterdam, 1965, 68–82 | MR | Zbl