@article{SM_2008_199_2_a1,
author = {L. A. Knizhnerman},
title = {Gauss{\textendash}Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational {Pad\'e-type} approximation for {Markov-type} functions},
journal = {Sbornik. Mathematics},
pages = {185--206},
year = {2008},
volume = {199},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a1/}
}
TY - JOUR
AU - L. A. Knizhnerman
TI - Gauss–Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational Padé-type approximation for Markov-type functions
JO - Sbornik. Mathematics
PY - 2008
SP - 185
EP - 206
VL - 199
IS - 2
UR - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a1/
LA - en
ID - SM_2008_199_2_a1
ER -
%0 Journal Article
%A L. A. Knizhnerman
%T Gauss–Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational Padé-type approximation for Markov-type functions
%J Sbornik. Mathematics
%D 2008
%P 185-206
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a1/
%G en
%F SM_2008_199_2_a1
L. A. Knizhnerman. Gauss–Arnoldi quadrature for $\bigl\langle(zI-A)^{-1}\varphi,\varphi\bigr\rangle$ and rational Padé-type approximation for Markov-type functions. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 185-206. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a1/
[1] W. E. Arnoldi, “The principle of minimized iterations in the solution of the matrix eigenvalue problem”, Quart. Appl. Math., 9 (1951), 17–29 | MR | Zbl
[2] Kh. D. Ikramov, Nesimmetrichnaya problema sobstvennykh znachenii. Chislennye metody, Nauka, M., 1991 | MR | Zbl
[3] A. Ruhe, “The two-sided Arnoldi algorithm for nonsymmetric eigenvalue problems”, Matrix pencils, Proceedings of the Conference (Pite Havsbad, Sweden, 1982), Lect. Notes in Math., 973, Springer-Verlag, Berlin–Heidelberg, 1982, 104–120 | DOI | MR | Zbl
[4] Y. Saad, “Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices”, Linear Algebra Appl., 34 (1980), 269–295 | DOI | MR | Zbl
[5] Y. Saad, “Krylov subspace methods for solving large unsymmetric linear systems”, Math. Comp., 37:155 (1981), 105–126 | DOI | MR | Zbl
[6] Y. Saad, M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Statist. Comput., 7:3 (1986), 856–869 | DOI | MR | Zbl
[7] H. C. Elman, Y. Saad, P. E. Saylor, “A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations”, SIAM J. Sci. Statist. Comput., 7:3 (1986), 840–855 | DOI | MR | Zbl
[8] D. Ho, F. Chatelin, M. Bennani, “Arnoldi–Tchebychev procedure for large scale nonsymmetric matrices”, RAIRO Modél. Math. Anal. Numér., 24:1 (1990), 53–65 | MR | Zbl
[9] P. N. Brown, Y. Saad, “Hybrid Krylov methods for nonlinear systems of equations”, SIAM J. Sci. Statist. Comput., 11:3 (1990), 450–481 | DOI | MR | Zbl
[10] C. W. Gear, Y. Saad, “Iterative solution of linear equations in ODE codes”, SIAM J. Sci. Statist. Comput., 4:4 (1983), 583–601 | DOI | MR | Zbl
[11] E. Gallopoulos, Y. Saad, “Efficient solution of parabolic equations by Krylov approximation methods”, SIAM J. Sci. Statist. Comput., 13:5 (1992), 1236–1264 | DOI | MR | Zbl
[12] M. Hochbruck, Ch. Lubich, “On Krylov subspace approximations to the matrix exponential operator”, SIAM J. Numer. Anal., 34:5 (1997), 1911–1925 | DOI | MR | Zbl
[13] Y. Saad, “Analysis of some Krylov subspace approximations to the matrix exponential operator”, SIAM J. Numer. Anal., 29:1 (1992), 209–228 | DOI | MR | Zbl
[14] M. Hochbruck, Ch. Lubich, H. Selhofer, “Exponential integrators for large systems of differential equations”, SIAM J. Sci. Comput., 19:5 (1998), 1552–1574 | DOI | MR | Zbl
[15] L. A. Knizhnerman, “Calculation of functions of unsymmetric matrices using Arnoldi's method”, U.S.S.R. Comput. Math. and Math. Phys., 31:1 (1991), 1–9 | MR | Zbl
[16] L. A. Knizhnerman, “Error bounds in Arnoldi's method: the case of a normal matrix”, Comput. Math. Math. Phys., 32:9 (1992), 1199–1211 | MR | Zbl
[17] L. Knizhnerman, On adaptation of the Arnoldi method to the spectrum, Technical report, Schlumberger-Doll Research Report #EMG-001-96-03, 1996 | Zbl
[18] L. Knizhnerman, “Error bounds for the Arnoldi method: a set of extreme eigenpairs”, Linear Algebra Appl., 296:1–3 (1999), 191–211 | DOI | MR | Zbl
[19] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl
[20] G. W. Stewart, J. G. Sun, Matrix perturbation theory, Comput. Sci. Sci. Comput., Academic Press, Boston, 1990 | MR | Zbl
[21] A. Markoff, “Deux démonstrations de la convergence de certaines fractions”, Acta Math., 19:1 (1895), 93–104 | DOI | MR | Zbl
[22] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[23] L. Knizhnerman, On adaptation of the Lanczos method to the spectrum, Technical report, Schlumberger-Doll Research, Res. Note EMG-001-95-12, 1995
[24] A. A. Gončar, “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR | Zbl
[25] E. A. Rahmanov, “On the asymptotics of the ratio of orthogonal polynomials”, Math. USSR-Sb., 32:2 (1977), 199–213 | DOI | MR | Zbl | Zbl
[26] E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II”, Math. USSR-Sb., 46:1 (1983), 105–117 | DOI | MR | Zbl | Zbl
[27] E. A. Rahmanov, “The convergence of diagonal Padé approximants”, Math. USSR-Sb., 33:2 (1977), 243–260 | DOI | MR | Zbl | Zbl
[28] A. A. Gonchar, S. P. Suetin, “Ob approksimatsiyakh Pade meromorfnykh funktsii markovskogo tipa”, Sovr. probl. matem., 5 (2004), 3–67 | DOI | MR | Zbl
[29] S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series”, Russian Math. Surveys, 57:1 (2002), 43–141 | DOI | MR | Zbl
[30] S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373 | DOI | MR | Zbl
[31] S. P. Suetin, “Convergence of Chebyshëv continued fractions for elliptic functions”, Sb. Math., 194:12 (2003), 1807–1835 | DOI | MR | Zbl
[32] P. Lancaster, Theory of matrices, Academic Press, New York–London, 1969 | MR | MR | Zbl | Zbl
[33] D. Calvetti, S.-M. Kim, L. Reichel, “Quadrature rules based on the Arnoldi process”, SIAM J. Matrix Anal. Appl., 26:3 (2005), 765–781 | DOI | MR | Zbl
[34] R. W. Freund, M. Hochbruck, “Gauss quadratures associated with the Arnoldi process and the Lanczos algorithm”, Linear algebra for large scale and real-time applications, Proceedings of the NATO Advanced Study Institute (Leuven, Belgium, 1992), NATO Adv. Sci. Inst. Ser. E Appl. Sci., 232, Kluwer Acad. Publ., Dordrecht, 1993, 377–380 | MR | Zbl
[35] D. H. Bailey, “A Fortran 90-based multiprecision system”, ACM Trans. Math. Software, 21:4 (1995), 379–387 | DOI | Zbl
[36] W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl
[37] A. Ambroladze, H. Wallin, “Convergence rates of Padé and Padé-type approximants”, J. Approx. Theory, 86:3 (1996), 310–319 | DOI | MR | Zbl
[38] H. S. Shapiro, The Schwarz function and its generalization to higher dimensions, Univ. Arkansas Lecture Notes Math. Sci., 9, Wiley, New York, 1992 | MR | Zbl
[39] D. Gaier, Lectures on complex approximation, Birkhäuser, Boston–Basel–Stuttart, 1987 ; D. Gaier, Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR | Zbl | MR | Zbl
[40] A. Ambroladze, “On exceptional sets of asymptotic relations for general orthogonal polynomials”, J. Approx. Theory, 82:2 (1995), 257–273 | DOI | MR | Zbl
[41] M. He, “The Faber polynomials for circular arcs”, Mathematics of computation, 1943-1993: a half- century of computational mathematics (Vancouver, Canada, 1993), Proc. Sympos. Appl. Math., 48, Amer. Math. Soc., Providence, RI, 1994, 301–304 | MR | Zbl
[42] S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965 | MR | Zbl | Zbl
[43] G. H. Golub, Ch. F. van Loan, Matrix computations, Johns Hopkins Ser. Math. Sci., 3, Johns Hopkins Univ. Press, Baltimore, MD, 1989 | MR | Zbl
[44] L. A. Knizhnerman, “Adaptation of the Lanczos and Arnoldi methods to the spectrum, or why the two Krylov subspace methods are powerful”, Chebyshevskii sb., 3:2 (2002), 141–164 | MR | Zbl