Capacity functor in the category of compacta
Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 159-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spaces of upper-semicontinuous capacities on compacta are studied. It is proved that the capacity functor defines a monad in the category of compacta containing the monad of inclusion hyperspaces as a submonad. In addition, a metrization of the space of capacities of a compact metric space is defined. It is also proved that the capacity functor is open. Bibliography: 17 titles.
@article{SM_2008_199_2_a0,
     author = {M. M. Zarichnyi and O. R. Nykyforchyn},
     title = {Capacity functor in the category of compacta},
     journal = {Sbornik. Mathematics},
     pages = {159--184},
     year = {2008},
     volume = {199},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_2_a0/}
}
TY  - JOUR
AU  - M. M. Zarichnyi
AU  - O. R. Nykyforchyn
TI  - Capacity functor in the category of compacta
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 159
EP  - 184
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_2_a0/
LA  - en
ID  - SM_2008_199_2_a0
ER  - 
%0 Journal Article
%A M. M. Zarichnyi
%A O. R. Nykyforchyn
%T Capacity functor in the category of compacta
%J Sbornik. Mathematics
%D 2008
%P 159-184
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2008_199_2_a0/
%G en
%F SM_2008_199_2_a0
M. M. Zarichnyi; O. R. Nykyforchyn. Capacity functor in the category of compacta. Sbornik. Mathematics, Tome 199 (2008) no. 2, pp. 159-184. http://geodesic.mathdoc.fr/item/SM_2008_199_2_a0/

[1] G. Choquet, “Theory of capacities”, Ann. Inst. Fourier (Grenoble), 5 (1953–1954), 131–295 | MR | Zbl

[2] D. Schmeidler, “Subjective probability and expected utility without additivity”, Econometrica, 57:3 (1989), 571–587 | DOI | MR | Zbl

[3] J. Eichberger, D. Kelsey, “Non-additive beliefs and strategic equilibria”, Games Econom. Behav., 30:2 (2000), 183–215 | DOI | MR | Zbl

[4] L. G. Epstein, T. Wang, “ ‘Beliefs about beliefs’ without probabilities”, Econometrica, 64:6 (1996), 1343–1373 | DOI | MR | Zbl

[5] I. Gilboa, D. Schmeidler, “Updating ambiguous beliefs”, J. Econom. Theory, 59:1 (1993), 33–49 | DOI | MR | Zbl

[6] L. Zhou, “Integral representation of continuous comonotonically additive functionals”, Trans. Amer. Math. Soc., 350:5 (1998), 1811–1822 | DOI | MR | Zbl

[7] E. V. Shchepin, “Functors and uncountable powers of compacta”, Russian Math. Surveys, 36:3 (1981), 1–71 | DOI | MR | Zbl | Zbl

[8] V. V. Fedorchuk, V. V. Filippov, Obschaya topologiya: osnovnye konstruktsii, Izd-vo Mosk. un-ta, M., 1988 | Zbl

[9] A. Teleiko, M. Zarichnyi, Categorical topology of compact Hausdorff spaces, Math. Stud. Monogr. Ser., 5, VNTL, L'viv, 1999 | MR | Zbl

[10] T. Radul, “On the functor of order-preserving functionals”, Comment. Math. Univ. Carolin., 39:3 (1998), 609–615 | MR | Zbl

[11] T. N. Radul, “The monad of inclusion hyperspaces and its algebras”, Ukrainian Math. J., 42:6 (1990), 712–716 | DOI | MR | Zbl

[12] S. Z. Ditor, L. Q. Eifler, “Some open mapping theorems for measures”, Trans. Amer. Math. Soc., 164 (1972), 287–293 | DOI | MR | Zbl

[13] P. Billingsley, Convergence of probability measures, Wiley, New York–London–Sydney–Toronto, 1968 | MR | MR | Zbl

[14] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh”, Dokl. AN SSSR, 115:6 (1957), 1058–1061 | MR | Zbl

[15] E. V. Moiseev, “On spaces of closed growth and inclusion hyperspaces”, Moscow Univ. Math. Bull., 43:3 (1988), 48–51 | MR | Zbl

[16] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York, 1998 | MR | Zbl

[17] O. R. Nykyforchyn, “On continuity, openness, and bicommutativity of functors in the category of compacta”, Methods Funct. Anal. Topology, 4:4 (1998), 82–85 | MR | Zbl