@article{SM_2008_199_1_a4,
author = {E. A. Sevast'yanov and E. Kh. Sadekova},
title = {Snakes as an apparatus for approximating},
journal = {Sbornik. Mathematics},
pages = {99--130},
year = {2008},
volume = {199},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_1_a4/}
}
E. A. Sevast'yanov; E. Kh. Sadekova. Snakes as an apparatus for approximating. Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 99-130. http://geodesic.mathdoc.fr/item/SM_2008_199_1_a4/
[1] S. Karlin, “Representation theorems for positive functions”, J. Math. Mech., 12:4 (1963), 599–617 | MR | Zbl
[2] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977 | MR | MR | Zbl | Zbl
[3] S. Karlin, W. J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure Appl. Math., 15, Intersci. Publ., New York–London–Sydney, 1966 | MR | MR | Zbl
[4] E. P. Dolzhenko, E. A. Sevast'yanov, “Approximations with a sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations”, Izv. Math., 63:3 (1999), 495–534 | DOI | MR | Zbl
[5] B. Sendov, “Aproksimirane na funktsii s algebrichni polinomi po otnoshenie na edna metrika ot khausdorfski tip”, Godishnik Sof. Univ. Fiz.-mat. fak., 55 (1962), 1–39 | MR | Zbl
[6] V. M. Veselinov, “Approksimirovanie funktsii pri pomoschi trigonometricheskikh polinomov otnositelno odnoi metriki khausdorfovskogo tipa”, Mathematica (Cluj), 9(32) (1967), 185–199 | MR | Zbl
[7] B. Sendov, “Some questions of the theory of approximations of functions and sets in the Hausdorff metric”, Russian Math. Surveys, 24:5 (1969), 143–183 | DOI | MR | Zbl | Zbl
[8] B. Sendov, Hausdorff approximations, Math. Appl. (East European Ser.), 50, Kluwer Acad. Publ., Dordrecht, 1990 | MR | MR | Zbl | Zbl
[9] B. Sendov, V. A. Popov, “The exact asymptotic behavior of the best approximation by algebraic and trigonometric polynomials in the Hausdorff metric”, Math. USSR-Sb., 18:1 (1972), 139–149 | DOI | MR | Zbl | Zbl
[10] E. Kh. Sadekova, “O nekotorykh ekstremalnykh polinomakh i ikh prilozheniyakh k khausdorfovym priblizheniyam”, Anal. Math., 30:1 (2004), 47–76 | DOI | MR | Zbl
[11] E. P. Dolzhenko, E. A. Sevast'yanov, “On approximations of functions in the Hausdorff metric”, Soviet Math. Dokl., 17:1 (1976), 188–191 | MR | Zbl
[12] E. P. Dolženko, E. A. Sevast'janov, “On the dependence of properties of functions on their degree of approximation by polynomials”, Math. USSR-Izv., 12:2 (1978), 255–288 | DOI | MR | Zbl | Zbl
[13] P. Petrushev, Sp. Tashev, “Nekotorye obratnye teoremy v metrike Khausdorfa”, Dokl. Bolg. AN, 29:12 (1976), 1721–1724 | MR | Zbl
[14] A. I. Ermakov, Obratnye teoremy dlya priblizheniya algebraicheskimi polinomami v khausdorfovoi metrike, Dis. $\dots$ kand. fiz.-matem. nauk, M., 1984
[15] T. P. Boyanov, “Tochnaya asimptotika nailuchshego khausdorfova priblizheniya klassov funktsii s zadannym modulem nepreryvnosti”, Serdika, 6:1 (1980), 84–97 | MR | Zbl
[16] E. P. Dolzhenko, E. A. Sevast'yanov, “On the definition of Chebyshev's snakes”, Moscow Univ. Math. Bull., 49:3 (1994), 45–53 | MR | Zbl
[17] A. S. Andreev, Khausdorfovi priblizheniya i splain-interpolyatsii, Dis. $\dots$ kand. fiz.-matem. nauk, Sofiya, 1976
[18] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl
[19] B. Kasimov, “O khausdorfovykh priblizheniyakh ogranichennykh mnozhestv na ploskosti”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 1985, no. 3, 28–32 | MR | Zbl