Snakes as an apparatus for approximating
Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 99-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Bulgarian mathematicians Sendov, Popov, and Boyanov have well-known results on the asymptotic behaviour of the least deviations of $2\pi$-periodic functions in the classes $H^\omega$ from trigonometric polynomials in the Hausdorff metric. However, the asymptotics they give are not adequate to detect a difference in, for example, the rate of approximation of functions $f$ whose moduli of continuity $\omega(f;\delta)$ differ by factors of the form $(\log(1/\delta))^\beta$. Furthermore, a more detailed determination of the asymptotic behaviour by traditional methods becomes very difficult. This paper develops an approach based on using trigonometric snakes as approximating polynomials. The snakes of order $n$ inscribed in the Minkowski $\delta$-neighbourhood of the graph of the approximated function $f$ provide, in a number of cases, the best approximation for $f$ (for the appropriate choice of $\delta$). The choice of $\delta$ depends on $n$ and $f$ and is based on constructing polynomial kernels adjusted to the Hausdorff metric and polynomials with special oscillatory properties. Bibliography: 19 titles.
@article{SM_2008_199_1_a4,
     author = {E. A. Sevast'yanov and E. Kh. Sadekova},
     title = {Snakes as an apparatus for approximating},
     journal = {Sbornik. Mathematics},
     pages = {99--130},
     year = {2008},
     volume = {199},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_1_a4/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
AU  - E. Kh. Sadekova
TI  - Snakes as an apparatus for approximating
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 99
EP  - 130
VL  - 199
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_1_a4/
LA  - en
ID  - SM_2008_199_1_a4
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%A E. Kh. Sadekova
%T Snakes as an apparatus for approximating
%J Sbornik. Mathematics
%D 2008
%P 99-130
%V 199
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2008_199_1_a4/
%G en
%F SM_2008_199_1_a4
E. A. Sevast'yanov; E. Kh. Sadekova. Snakes as an apparatus for approximating. Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 99-130. http://geodesic.mathdoc.fr/item/SM_2008_199_1_a4/

[1] S. Karlin, “Representation theorems for positive functions”, J. Math. Mech., 12:4 (1963), 599–617 | MR | Zbl

[2] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977 | MR | MR | Zbl | Zbl

[3] S. Karlin, W. J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure Appl. Math., 15, Intersci. Publ., New York–London–Sydney, 1966 | MR | MR | Zbl

[4] E. P. Dolzhenko, E. A. Sevast'yanov, “Approximations with a sign-sensitive weight. Stability, applications to the theory of snakes and Hausdorff approximations”, Izv. Math., 63:3 (1999), 495–534 | DOI | MR | Zbl

[5] B. Sendov, “Aproksimirane na funktsii s algebrichni polinomi po otnoshenie na edna metrika ot khausdorfski tip”, Godishnik Sof. Univ. Fiz.-mat. fak., 55 (1962), 1–39 | MR | Zbl

[6] V. M. Veselinov, “Approksimirovanie funktsii pri pomoschi trigonometricheskikh polinomov otnositelno odnoi metriki khausdorfovskogo tipa”, Mathematica (Cluj), 9(32) (1967), 185–199 | MR | Zbl

[7] B. Sendov, “Some questions of the theory of approximations of functions and sets in the Hausdorff metric”, Russian Math. Surveys, 24:5 (1969), 143–183 | DOI | MR | Zbl | Zbl

[8] B. Sendov, Hausdorff approximations, Math. Appl. (East European Ser.), 50, Kluwer Acad. Publ., Dordrecht, 1990 | MR | MR | Zbl | Zbl

[9] B. Sendov, V. A. Popov, “The exact asymptotic behavior of the best approximation by algebraic and trigonometric polynomials in the Hausdorff metric”, Math. USSR-Sb., 18:1 (1972), 139–149 | DOI | MR | Zbl | Zbl

[10] E. Kh. Sadekova, “O nekotorykh ekstremalnykh polinomakh i ikh prilozheniyakh k khausdorfovym priblizheniyam”, Anal. Math., 30:1 (2004), 47–76 | DOI | MR | Zbl

[11] E. P. Dolzhenko, E. A. Sevast'yanov, “On approximations of functions in the Hausdorff metric”, Soviet Math. Dokl., 17:1 (1976), 188–191 | MR | Zbl

[12] E. P. Dolženko, E. A. Sevast'janov, “On the dependence of properties of functions on their degree of approximation by polynomials”, Math. USSR-Izv., 12:2 (1978), 255–288 | DOI | MR | Zbl | Zbl

[13] P. Petrushev, Sp. Tashev, “Nekotorye obratnye teoremy v metrike Khausdorfa”, Dokl. Bolg. AN, 29:12 (1976), 1721–1724 | MR | Zbl

[14] A. I. Ermakov, Obratnye teoremy dlya priblizheniya algebraicheskimi polinomami v khausdorfovoi metrike, Dis. $\dots$ kand. fiz.-matem. nauk, M., 1984

[15] T. P. Boyanov, “Tochnaya asimptotika nailuchshego khausdorfova priblizheniya klassov funktsii s zadannym modulem nepreryvnosti”, Serdika, 6:1 (1980), 84–97 | MR | Zbl

[16] E. P. Dolzhenko, E. A. Sevast'yanov, “On the definition of Chebyshev's snakes”, Moscow Univ. Math. Bull., 49:3 (1994), 45–53 | MR | Zbl

[17] A. S. Andreev, Khausdorfovi priblizheniya i splain-interpolyatsii, Dis. $\dots$ kand. fiz.-matem. nauk, Sofiya, 1976

[18] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl

[19] B. Kasimov, “O khausdorfovykh priblizheniyakh ogranichennykh mnozhestv na ploskosti”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 1985, no. 3, 28–32 | MR | Zbl