@article{SM_2008_199_1_a3,
author = {G. V. Sandrakov},
title = {Homogenization of variational inequalities and equations},
journal = {Sbornik. Mathematics},
pages = {67--98},
year = {2008},
volume = {199},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_1_a3/}
}
G. V. Sandrakov. Homogenization of variational inequalities and equations. Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 67-98. http://geodesic.mathdoc.fr/item/SM_2008_199_1_a3/
[1] G. V. Sandrakov, “Homogenization of variational inequalities for problems with a regular obstacle”, Russian Acad. Sci. Dokl. Math., 70:1 (2004), 539–542 | MR
[2] G. V. Sandrakov, “Homogenization of variational inequalities for obstacle problems”, Sb. Math., 196:4 (2005), 541–560 | DOI | MR | Zbl
[3] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl
[4] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam–New York–Oxford, 1978 | MR | Zbl
[5] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, New York–London, 1980 | MR | MR | Zbl | Zbl
[6] A. Mokrane, F. Murat, “The Lewy–Stampacchia inequality for bilateral problems”, Ricerche Mat., 53:1 (2004), 139–182 | MR | Zbl
[7] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl
[8] I. Ekeland, R. Temam, Convex analysis and variational problems, Stud. Math. Appl., 1, North-Holland, Amsterdam–Oxford; Elsevier, New York, 1976 | MR | MR | Zbl | Zbl
[9] M. Valadier, “Two-scale convergence and Young measures”, Prepublication du Laboratoire d'analyse convexe, Universite Montpellier II, Montpellier, 1995
[10] A. A. Amosov, “Weak convergence for a class of rapidly oscillating functions”, Math. Notes, 62:1 (1997), 122–126 | DOI | MR | Zbl
[11] S. Fučik, A. Kufner, Nonlinear differential equations, Stud. Appl. Mech., 2, Elsevier, Amsterdam–New York, 1980 | MR | MR | Zbl | Zbl
[12] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[13] N. Fusco, G. Moscariello, “On the homogenization of quasilinear divergence structure operators”, Ann. Mat. Pura Appl. (4), 146:1 (1986), 1–13 | DOI | MR | Zbl
[14] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl
[15] P. Chiadò Piat, A. Defranceschi, “Homogenization of monotone operators”, Nonlinear Anal., 14:9 (1990), 717–732 | DOI | MR | Zbl
[16] G. V. Sandrakov, “Homogenization of nonlinear equations and variational inequalities with obstacles”, Russian Acad. Sci. Dokl. Math., 73:2 (2006), 178–181 | MR | MR
[17] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl
[18] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Academie-Verlag, Berlin, 1974 | MR | MR | Zbl
[19] V. V. Zhikov, “On two-scale convergence”, J. Math. Sci. (N. Y.), 120:3 (2004), 1328–1352 | DOI | MR | Zbl
[20] D. Lukkassen, P. Wall, “Two-scale convergence with respect to measures and homogenization of monotone operators”, J. Funct. Spaces Appl., 3:2 (2005), 125–161 | MR | Zbl
[21] V. V. Zhikov, M. E. Rychago, S. B. Shul'ga, “Homogenization of monotone operators by the method of two-scale convergence”, J. Math. Sci. (N. Y.), 127:5 (2005), 2159–2173 | DOI | MR | Zbl
[22] J. Casado-Díaz, I. Gayte, “The two-scale convergence method applied to generalized Besicovitch spaces”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458:2028 (2002), 2925–2946 | DOI | MR | Zbl
[23] V. Chiadò Piat, F. Serra Cassano, “Some remarks about the density of smooth functions in weighted Sobolev spaces”, J. Convex Anal., 1:2 (1994), 135–142 | MR | Zbl
[24] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl
[25] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart Winston, New York–Toronto–London, 1965 | MR | Zbl | Zbl