A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations
Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 13-44
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be an arbitrary compact subset of the plane. It is proved that if $L$ is a homogeneous elliptic operator
with constant coefficients and locally bounded fundamental solution, then each function $f$
that is continuous on $X$ and satisfies the equation $Lf=0$ at all interior points of $X$ can be uniformly approximated on $X$ by solutions of the same equation having singularities outside $X$. A theorem on uniform piecemeal approximation of a function is also established under weaker constraints than in the standard Vitushkin scheme.
Bibliography: 24 titles.
@article{SM_2008_199_1_a1,
author = {M. Ya. Mazalov},
title = {A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations},
journal = {Sbornik. Mathematics},
pages = {13--44},
publisher = {mathdoc},
volume = {199},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_1_a1/}
}
TY - JOUR AU - M. Ya. Mazalov TI - A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations JO - Sbornik. Mathematics PY - 2008 SP - 13 EP - 44 VL - 199 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_1_a1/ LA - en ID - SM_2008_199_1_a1 ER -
M. Ya. Mazalov. A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations. Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 13-44. http://geodesic.mathdoc.fr/item/SM_2008_199_1_a1/