A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations
Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 13-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be an arbitrary compact subset of the plane. It is proved that if $L$ is a homogeneous elliptic operator with constant coefficients and locally bounded fundamental solution, then each function $f$ that is continuous on $X$ and satisfies the equation $Lf=0$ at all interior points of $X$ can be uniformly approximated on $X$ by solutions of the same equation having singularities outside $X$. A theorem on uniform piecemeal approximation of a function is also established under weaker constraints than in the standard Vitushkin scheme. Bibliography: 24 titles.
@article{SM_2008_199_1_a1,
     author = {M. Ya. Mazalov},
     title = {A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {13--44},
     publisher = {mathdoc},
     volume = {199},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_1_a1/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 13
EP  - 44
VL  - 199
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_1_a1/
LA  - en
ID  - SM_2008_199_1_a1
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations
%J Sbornik. Mathematics
%D 2008
%P 13-44
%V 199
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_1_a1/
%G en
%F SM_2008_199_1_a1
M. Ya. Mazalov. A~criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations. Sbornik. Mathematics, Tome 199 (2008) no. 1, pp. 13-44. http://geodesic.mathdoc.fr/item/SM_2008_199_1_a1/