Cubical homology and the Leech dimension of free partially commutative monoids
Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1859-1884 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to problems arising when applying homological algebra to computer science. It is proved that the Leech dimension of a free partially commutative monoid is equal to the least upper bound of the cardinalities of finite subsets of pairwise commuting generators of the monoid. For an arbitrary free partially commutative monoid $M(E,I)$ in which every subset of pairwise commuting generators is finite and for any contravariant natural system $F$ on $M(E,I)$ we construct a semicubical set $T(E,I)$ with a homological system $\overline F$ on this set such that the Leech homology groups $H_n(M(E,I),F)$ are isomorphic to the cubical homology groups $H_n(T(E,I),\overline F)$. Complexes of Abelian groups are also constructed enabling one to obtain (under additional finiteness conditions) algorithms for computing the Leech homology groups and homology groups with coefficients in right $M(E,I)$-modules. Bibliography: 16 titles.
@article{SM_2008_199_12_a5,
     author = {A. A. Khusainov},
     title = {Cubical homology and the {Leech} dimension of free partially commutative monoids},
     journal = {Sbornik. Mathematics},
     pages = {1859--1884},
     year = {2008},
     volume = {199},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a5/}
}
TY  - JOUR
AU  - A. A. Khusainov
TI  - Cubical homology and the Leech dimension of free partially commutative monoids
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1859
EP  - 1884
VL  - 199
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_12_a5/
LA  - en
ID  - SM_2008_199_12_a5
ER  - 
%0 Journal Article
%A A. A. Khusainov
%T Cubical homology and the Leech dimension of free partially commutative monoids
%J Sbornik. Mathematics
%D 2008
%P 1859-1884
%V 199
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2008_199_12_a5/
%G en
%F SM_2008_199_12_a5
A. A. Khusainov. Cubical homology and the Leech dimension of free partially commutative monoids. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1859-1884. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a5/

[1] A. A. Husainov, “On the homology of small categories and asynchronous transition systems”, Homology Homotopy Appl., 6:1 (2004), 439–471 | MR | Zbl

[2] V. Diekert, Y. Métivier, “Partial commutation and traces”, Handbook of formal languages, vol. 3, Springer-Verlag, Berlin, 1997, 457–533 | MR | Zbl

[3] A. A. Husainov, “On the homology of monoids and distributed systems”, 5th International Algebraic Conference in Ukraine, Abstracts, Odessa, 2005

[4] L. Yu. Polyakova, “Resolutions for free partially commutative monoids”, Siberian Math. J., 48:6 (2007), 1038–1045 | DOI | MR

[5] A. A. Khusainov, “Homology groups of semicubical sets”, Sib. Math. J., 49:1 (2008), 180–190 | DOI | MR

[6] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 35, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | MR | Zbl | Zbl

[7] A. A. Khusainov, “Comparing dimensions of a small category”, Siberian Math. J., 38:6 (1997), 1230–1240 | DOI | MR | Zbl

[8] U. Oberst, “Homology of categories and exactness of direct limits”, Math. Z., 107:2 (1968), 87–115 | DOI | MR | Zbl

[9] H.-J. Baues, G. Wirsching, “Cohomology of small categories”, J. Pure Appl. Algebra, 38:2–3 (1985), 187–211 | DOI | MR | Zbl

[10] B. Mitchell, “A remark on projectives in functor categories”, J. Algebra, 69:1 (1981), 24–31 | DOI | MR | Zbl

[11] S. MacLane, Homology, Die Grundlehren der mathematischen Wissenschaften, 114, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl | Zbl

[12] T. Kaczynski, K. Mischaikow, M. Mrozek, Computational homology, Appl. Math. Sci., 157, Springer-Verlag, New York, 2004 | MR | Zbl

[13] E. Goubault, The geometry of concurrency, Thesis, Ecole Normale Supérieure, 1995

[14] S. MacLane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York, 1998 | MR | Zbl

[15] J. Leech, “Cohomology theory for monoid congruences”, Houston J. Math., 11:2 (1985), 207–223 | MR | Zbl

[16] A. A. Khusainov, V. E. Lopatkin, I. A. Treschev, “Issledovanie matematicheskoi modeli parallelnykh vychislitelnykh protsessov metodami algebraicheskoi topologii”, Sib. zhurn. industr. matem., 11:1 (2008), 141–151