Composition followed by differentiation from mixed-norm spaces to $\alpha$-Bloch spaces
Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1847-1857 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the boundedness and the compactness of products of differentiation operators and composition operators from mixed-norm spaces to $\alpha$-Bloch spaces. Bibliography: 18 titles.
@article{SM_2008_199_12_a4,
     author = {Songxiao Li and S. Stevi\'c},
     title = {Composition followed by differentiation from mixed-norm spaces to $\alpha${-Bloch} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1847--1857},
     year = {2008},
     volume = {199},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a4/}
}
TY  - JOUR
AU  - Songxiao Li
AU  - S. Stević
TI  - Composition followed by differentiation from mixed-norm spaces to $\alpha$-Bloch spaces
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1847
EP  - 1857
VL  - 199
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_12_a4/
LA  - en
ID  - SM_2008_199_12_a4
ER  - 
%0 Journal Article
%A Songxiao Li
%A S. Stević
%T Composition followed by differentiation from mixed-norm spaces to $\alpha$-Bloch spaces
%J Sbornik. Mathematics
%D 2008
%P 1847-1857
%V 199
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2008_199_12_a4/
%G en
%F SM_2008_199_12_a4
Songxiao Li; S. Stević. Composition followed by differentiation from mixed-norm spaces to $\alpha$-Bloch spaces. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1847-1857. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a4/

[1] C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[2] J. H. Shapiro, Composition operators and classical function theory, Universitext Tracts Math., Springer-Verlag, New York, 1993 | MR | Zbl

[3] K. Zhu, Operator theory in function spaces, Pure Appl. Math., 139, Dekker, New York, 1990 | MR | Zbl

[4] R. A. Hibschweiler, N. Portnoy, “Composition followed by differentiation between Bergman and Hardy spaces”, Rocky Mountain J. Math., 35:3 (2005), 843–855 | DOI | MR | Zbl

[5] D.-Ch. Chang, S. Stević, “The generalized Cesàro operator on the unit polydisk”, Taiwanese J. Math., 7:2 (2003), 293–308 | MR | Zbl

[6] D.-Ch. Chang, S. Stević, “Addendum to the paper "A note on weighted Bergman spaces and the Cesàro operator”, Nagoya Math. J., 180 (2005), 77–90 | MR | Zbl

[7] D. D. Clahane, S. Stević, “Norm equivalence and composition operators between Bloch/Lipschitz spaces of the ball”, J. Inequal. Appl., 2006, article ID 61018 | DOI | MR | Zbl

[8] S. Stević, “Composition operators on the generalized Bergman space”, J. Indian Math. Soc., 69:1–4 (2002), 61–64 | MR | Zbl

[9] S. Stević, “Cesàro averaging operators”, Math. Nachr., 248–249:1 (2003), 185–189 | DOI | MR | Zbl

[10] S. Stević, “Hilbert operator on the polydisk”, Bull. Inst. Math. Acad. Sinica, 31:2 (2003), 135–142 | MR | Zbl

[11] S. Stević, “The generalized Cesàro operator on Dirichlet spaces”, Studia Sci. Math. Hungar., 40:1–2 (2003), 83–94 | DOI | MR | Zbl

[12] S. Stević, “The generalized Libera transform on Hardy, Bergman and Bloch spaces on the unit polydisc”, Z. Anal. Anwendungen, 22:1 (2003), 179–186 | MR | Zbl

[13] S. Stević, “A note on the generalized Cesàro operator on Bergman spaces”, Indian J. Math., 46:1 (2004), 129–136 | MR | Zbl

[14] S. Stević, “On an integral operator on the unit ball in $\mathbb C^n$”, J. Inequal. Appl., 2005, no. 1, 81–88 | DOI | MR | Zbl

[15] J.-H. Shi, “Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of ${\mathbb C}^n$”, Trans. Amer. Math. Soc., 328:2 (1991), 619–637 | DOI | MR | Zbl

[16] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York–Berlin, 1980 ; U. Rudin, Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl | MR | Zbl

[17] A. L. Shields, D. L. Williams, “Bounded projections, duality, and multipliers in spaces of analytic functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | DOI | MR | Zbl

[18] Sh. Ohno, K. Stroethoff, R. Zhao, “Weighted composition operators between Bloch-type spaces”, Rocky Mountain J. Math., 33:1 (2003), 191–215 | DOI | MR | Zbl