@article{SM_2008_199_12_a4,
author = {Songxiao Li and S. Stevi\'c},
title = {Composition followed by differentiation from mixed-norm spaces to $\alpha${-Bloch} spaces},
journal = {Sbornik. Mathematics},
pages = {1847--1857},
year = {2008},
volume = {199},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a4/}
}
Songxiao Li; S. Stević. Composition followed by differentiation from mixed-norm spaces to $\alpha$-Bloch spaces. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1847-1857. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a4/
[1] C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[2] J. H. Shapiro, Composition operators and classical function theory, Universitext Tracts Math., Springer-Verlag, New York, 1993 | MR | Zbl
[3] K. Zhu, Operator theory in function spaces, Pure Appl. Math., 139, Dekker, New York, 1990 | MR | Zbl
[4] R. A. Hibschweiler, N. Portnoy, “Composition followed by differentiation between Bergman and Hardy spaces”, Rocky Mountain J. Math., 35:3 (2005), 843–855 | DOI | MR | Zbl
[5] D.-Ch. Chang, S. Stević, “The generalized Cesàro operator on the unit polydisk”, Taiwanese J. Math., 7:2 (2003), 293–308 | MR | Zbl
[6] D.-Ch. Chang, S. Stević, “Addendum to the paper "A note on weighted Bergman spaces and the Cesàro operator”, Nagoya Math. J., 180 (2005), 77–90 | MR | Zbl
[7] D. D. Clahane, S. Stević, “Norm equivalence and composition operators between Bloch/Lipschitz spaces of the ball”, J. Inequal. Appl., 2006, article ID 61018 | DOI | MR | Zbl
[8] S. Stević, “Composition operators on the generalized Bergman space”, J. Indian Math. Soc., 69:1–4 (2002), 61–64 | MR | Zbl
[9] S. Stević, “Cesàro averaging operators”, Math. Nachr., 248–249:1 (2003), 185–189 | DOI | MR | Zbl
[10] S. Stević, “Hilbert operator on the polydisk”, Bull. Inst. Math. Acad. Sinica, 31:2 (2003), 135–142 | MR | Zbl
[11] S. Stević, “The generalized Cesàro operator on Dirichlet spaces”, Studia Sci. Math. Hungar., 40:1–2 (2003), 83–94 | DOI | MR | Zbl
[12] S. Stević, “The generalized Libera transform on Hardy, Bergman and Bloch spaces on the unit polydisc”, Z. Anal. Anwendungen, 22:1 (2003), 179–186 | MR | Zbl
[13] S. Stević, “A note on the generalized Cesàro operator on Bergman spaces”, Indian J. Math., 46:1 (2004), 129–136 | MR | Zbl
[14] S. Stević, “On an integral operator on the unit ball in $\mathbb C^n$”, J. Inequal. Appl., 2005, no. 1, 81–88 | DOI | MR | Zbl
[15] J.-H. Shi, “Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of ${\mathbb C}^n$”, Trans. Amer. Math. Soc., 328:2 (1991), 619–637 | DOI | MR | Zbl
[16] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York–Berlin, 1980 ; U. Rudin, Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl | MR | Zbl
[17] A. L. Shields, D. L. Williams, “Bounded projections, duality, and multipliers in spaces of analytic functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | DOI | MR | Zbl
[18] Sh. Ohno, K. Stroethoff, R. Zhao, “Weighted composition operators between Bloch-type spaces”, Rocky Mountain J. Math., 33:1 (2003), 191–215 | DOI | MR | Zbl