$C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into
Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1809-1846 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

If $D$ is a Lyapunov-Dini domain in $\mathbb R^N$, $N\in\{2,3,\dots\}$, the possibility of $C^1$-extension and $C^1$-reflection of subharmonic functions in $D$ lying in the class $C^1(\overline D)$ across the boundary of $D$ to the whole of $\mathbb R^N$ is investigated. In particular, it is shown that extensions and reflections of this kind are always possible for an arbitrary Lyapunov domain with connected complement. Bibliography: 14 titles.
@article{SM_2008_199_12_a3,
     author = {P. V. Paramonov},
     title = {$C^1$-extension and $C^1$-reflection of subharmonic functions from {Lyapunov-Dini} domains into},
     journal = {Sbornik. Mathematics},
     pages = {1809--1846},
     year = {2008},
     volume = {199},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1809
EP  - 1846
VL  - 199
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/
LA  - en
ID  - SM_2008_199_12_a3
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into
%J Sbornik. Mathematics
%D 2008
%P 1809-1846
%V 199
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/
%G en
%F SM_2008_199_12_a3
P. V. Paramonov. $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1809-1846. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/

[1] P. M. Gauthier, “Subharmonic extensions and approximations”, Canad. Math. Bull., 37:1 (1994), 46–53 | MR | Zbl

[2] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535 | DOI | MR | Zbl

[3] M. S. Mel'nikov, P. V. Paramonov, “$C^1$-extension of subharmonic functions from closed Jordan domains in $\mathbb R^2$”, Izv. Math., 68:6 (2004), 1165–1178 | DOI | MR | Zbl

[4] P. V. Paramonov, “$C^m$-extension of subharmonic functions”, Izv. Math., 69:6 (2005), 1211–1223 | DOI | MR | Zbl

[5] St. J. Gardiner, A. Gustafsson, “Smooth potentials with prescribed boundary behaviour”, Publ. Mat., 48:1 (2004), 241–249 | MR | Zbl

[6] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36:1 (1934), 63–89 | DOI | MR | Zbl

[7] K.-O. Widman, “Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations”, Math. Scand., 21 (1967), 17–37 | MR | Zbl

[8] P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Math. USSR-Sb., 71:1 (1992), 183–207 | DOI | MR | Zbl | Zbl

[9] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl

[10] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl | Zbl

[11] J. Wermer, Potential theory, Lecture Notes in Math., 408, Springer-Verlag, Berlin–Heidelberg–New York, 1974 | DOI | MR | MR | Zbl | Zbl

[12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl

[13] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[14] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl