$C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into
Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1809-1846

Voir la notice de l'article provenant de la source Math-Net.Ru

If $D$ is a Lyapunov-Dini domain in $\mathbb R^N$, $N\in\{2,3,\dots\}$, the possibility of $C^1$-extension and $C^1$-reflection of subharmonic functions in $D$ lying in the class $C^1(\overline D)$ across the boundary of $D$ to the whole of $\mathbb R^N$ is investigated. In particular, it is shown that extensions and reflections of this kind are always possible for an arbitrary Lyapunov domain with connected complement. Bibliography: 14 titles.
@article{SM_2008_199_12_a3,
     author = {P. V. Paramonov},
     title = {$C^1$-extension and $C^1$-reflection of subharmonic functions from {Lyapunov-Dini} domains into},
     journal = {Sbornik. Mathematics},
     pages = {1809--1846},
     publisher = {mathdoc},
     volume = {199},
     number = {12},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into
JO  - Sbornik. Mathematics
PY  - 2008
SP  - 1809
EP  - 1846
VL  - 199
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/
LA  - en
ID  - SM_2008_199_12_a3
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into
%J Sbornik. Mathematics
%D 2008
%P 1809-1846
%V 199
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/
%G en
%F SM_2008_199_12_a3
P. V. Paramonov. $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1809-1846. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/