$C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into
Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1809-1846
Voir la notice de l'article provenant de la source Math-Net.Ru
If $D$ is a Lyapunov-Dini domain in $\mathbb R^N$, $N\in\{2,3,\dots\}$, the possibility of $C^1$-extension and $C^1$-reflection of subharmonic functions in $D$ lying in the class $C^1(\overline D)$ across the boundary of $D$ to the whole of $\mathbb R^N$ is investigated. In particular, it is shown that extensions and reflections of this kind are always possible for an arbitrary Lyapunov domain with connected complement.
Bibliography: 14 titles.
@article{SM_2008_199_12_a3,
author = {P. V. Paramonov},
title = {$C^1$-extension and $C^1$-reflection of subharmonic functions from {Lyapunov-Dini} domains into},
journal = {Sbornik. Mathematics},
pages = {1809--1846},
publisher = {mathdoc},
volume = {199},
number = {12},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/}
}
TY - JOUR AU - P. V. Paramonov TI - $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into JO - Sbornik. Mathematics PY - 2008 SP - 1809 EP - 1846 VL - 199 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/ LA - en ID - SM_2008_199_12_a3 ER -
P. V. Paramonov. $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1809-1846. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/