@article{SM_2008_199_12_a3,
author = {P. V. Paramonov},
title = {$C^1$-extension and $C^1$-reflection of subharmonic functions from {Lyapunov-Dini} domains into},
journal = {Sbornik. Mathematics},
pages = {1809--1846},
year = {2008},
volume = {199},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/}
}
P. V. Paramonov. $C^1$-extension and $C^1$-reflection of subharmonic functions from Lyapunov-Dini domains into. Sbornik. Mathematics, Tome 199 (2008) no. 12, pp. 1809-1846. http://geodesic.mathdoc.fr/item/SM_2008_199_12_a3/
[1] P. M. Gauthier, “Subharmonic extensions and approximations”, Canad. Math. Bull., 37:1 (1994), 46–53 | MR | Zbl
[2] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535 | DOI | MR | Zbl
[3] M. S. Mel'nikov, P. V. Paramonov, “$C^1$-extension of subharmonic functions from closed Jordan domains in $\mathbb R^2$”, Izv. Math., 68:6 (2004), 1165–1178 | DOI | MR | Zbl
[4] P. V. Paramonov, “$C^m$-extension of subharmonic functions”, Izv. Math., 69:6 (2005), 1211–1223 | DOI | MR | Zbl
[5] St. J. Gardiner, A. Gustafsson, “Smooth potentials with prescribed boundary behaviour”, Publ. Mat., 48:1 (2004), 241–249 | MR | Zbl
[6] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36:1 (1934), 63–89 | DOI | MR | Zbl
[7] K.-O. Widman, “Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations”, Math. Scand., 21 (1967), 17–37 | MR | Zbl
[8] P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Math. USSR-Sb., 71:1 (1992), 183–207 | DOI | MR | Zbl | Zbl
[9] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl
[10] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl | Zbl
[11] J. Wermer, Potential theory, Lecture Notes in Math., 408, Springer-Verlag, Berlin–Heidelberg–New York, 1974 | DOI | MR | MR | Zbl | Zbl
[12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl
[13] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl
[14] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl